(3.80.6.131) 您好!臺灣時間:2021/05/17 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:凃岐旭
研究生(外文):Chi-Hsu Tu
論文名稱:矽晶圓輪磨技術效能提昇之應用分析
論文名稱(外文):Application on Silicon Wafer Grinding Process Performance Enhancement
指導教授:楊宏智楊宏智引用關係
指導教授(外文):Hong-Tsu Young
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:輪磨翹曲次表面破壞層
外文關鍵詞:subsurface damagewarpgrinding
相關次數:
  • 被引用被引用:3
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
輪磨(Grinding)加工在半導體晶圓薄化封裝、晶圓製造、及晶圓再生產業有舉足輕重的地位。矽晶圓輪磨製程主要特色為可自動化、平坦度佳、表面粗糙度小、快速移除量、單位加工時間少、產出良率高。但是對於如何減少次表面破壞層(Sub-Surface Damage),降低殘留應力產生的翹曲(Warp)兩項技術瓶頸,是製程中必須有效控制及避免的重要項目。
本研究全程規劃三工作主軸,第一階段採用各式粒徑分佈暨不同燒結材料砂輪,使用G&N奈米研磨機台進行加工驗證。其中主要利用矽晶圓單一磨粒切深延性加工理論並配合斜面觀察法,建立各式砂輪種類暨機台製程主要參數,與矽晶圓表面破壞層深度關係式。第二階段設計輪磨實際溫度量測裝置,結合第一階段收集之實驗數據,比較翹曲值與輪磨溫度之間的關係,再藉由控制機台參數及不同冷卻水添加物來改善晶片翹曲值,減少次表面層破壞層深度,節省砂輪削銳損失,以創造更大製程效益。第三階段使用單面蝕刻,藉由理論公式與實際量測晶片物性計算表面殘留應力,結合前兩階段完成之結果,找出有效提昇輪磨製程技術之應用。
Grinding has gained important status in the IC packaging , wafer manufacture and wafer reclaim industry. Grinding process could reach low TTV (Total Thickness Variation) , excellent surface roughness , rapid material removal rate , reduced cycle time and higher automation level. To avoid deep subsurface damage layer and reduce warpage caused by residual stress , assessment should be made prior to production run for the industry.
This study will concentrate on grinding 8 inches silicon wafers , and three stages were planned. First , ductile regime grinding and cross-section method are introduced to investigate the subsurface damage layer and critical depth of cut , under the influence of grinding parameters and wheel types. Second , measurement of grinding temperature between grinding wheel and wafer surface device is made. With the relation between warp and grinding temperature established from first step , grinding parameters and suitable surfactant in the cooling water will drop the interface temperature and , hence , leading to lower warp . Third , front side etching and Stoney’s formula will be used to calculate the residual stress and attempt is made to forecast the subsurface damage layer depth.
摘 要 I
ABSTRACT II
目 錄 III
圖 例 目 錄 VII
表 格 目 錄 XI
符 號 說 明 XII
第一章 緒論 1
1.1研究動機及目的 1
1.2研究方法 2
第二章 輪磨加工原理及矽晶圓介紹 4
2.1 矽晶圓特性介紹 4
2.2 輪磨(Grinding)加工原理 8
第三章 相關研究文獻回顧 12
3.1 各式磨粒加工模擬 12
3.1.1 壓裂痕試驗(Indentation Test) 12
3.1.2 刮痕試驗(Scratching Test) 17
3.2 矽晶圓延性輪磨加工 20
3.2.1 延性輪磨加工(Ductile Regime Grinding) 20
3.2.2 材料機械性質對臨界切深的影響 24
3.2.3切削方向及不同結晶構造對臨界切深的影響 26
3.2.4 加工條件對臨界切深的影響 30
3.3 矽晶圓次表面破壞層探討 33
3.3.1 次表面破壞層(Subsurface Damage Layer) 33
3.3.2 裂痕的破裂模式 34
3.4熱效應及殘留應力影響 39
第四章 實驗規劃與相關理論推導 42
4.1 輪磨實驗規劃 42
4.2輪磨表面粗糙度與磨粒切深理論值相關性驗證 49
4.2.1 晶圓輪磨之單一磨粒切深 49
4.2.2 表面粗糙度與輪磨參數關係 53
4.2.3 相關性驗證 56
4.3 矽晶圓輪磨次表面破壞層(SSD)剖析 59
4.3.1 量測方法驗證說明 59
4.3.2 輪磨參數及鑽石砂輪粒徑分佈與SSD之相關性 62
4.4 矽晶圓輪磨溫度監測裝置 69
4.5 晶圓翹曲殘留應力模擬分析與解決方法 74
4.5.1 殘留應力理論 74
第五章 實驗結果分析比較 80
5.1 Ra、Rmax與單一磨粒預測切深關係 80
5.2 影響SSD因素及殘留應力變因 82
5.3 破壞層深度預測實例 85
第六章 結論與未來展望 87
6.1結論 87
6.2未來展望 88
參考文獻 90
附錄A 95
附錄B 97
【1】F. Shimura, Semiconductor Silicon Crystal Technology. San Diego: Academic Press, 1989.
【2】C. Chen, and M. Leipold, “Fracture Toughness of Silicon.” American Ceramic Society Bulletin. v 59, n 4, 1980, pp. 469-472.
【3】P. B. Hirsch, “脆性-延性遷移の基礎”日本学会会报. v29, n1, 1990 , pp.5.
【4】T. C. Wu, N. Morita, and Y. Yoshida, “Study on Grinding of Single Crystalline Silicon(2nd report, The Effect of Temperature and Load Rate on Brittle-Ductile Transition).” 日本機械学会論文集(C編)58 卷555号, 1992-11.
【5】C. A. Swenson , J. Phys. Chem. Ref. Data 12 , 1983 , p.179-182.
【6】B. Lawn, and M. Swain, “Microfracture Beneath Point Indentations in Brittle Solids.” Journal of Material Science, v 10, 1975, pp.113-122.
【7】D. E. Kim and N. P. Suh, “Plastic Deformation of Silicon During Contact Sliding at Ambient Temperature,” Journal of Materials Science, v 28, 1993, pp. 3895-3899.
【8】B. Lawn, and A.G. Evans, “A Model for Crack Initiation in Elastic/Plastic Indentation Fields,” Journal of Materials Science, v 12, 1977, pp.2195-2199.
【9】M. Swain, “Microfracture About Scratches in Brittle Solids.” Proceedings of the Royal Society of London, Series A, v 366, 1979, pp. 575-597.
【10】W. Cheng, E. Ling, and L. Finnie, “Median Cracking of Brittle Solids Due to Scribing with Sharp Indenters,” Journal of the American Ceramic Society, v 73, 1990, pp. 580-586.
【11】H. P. Kirchner, “Comparison of Single Point and Multipoint Grinding Damage in Glass,” Journal of the American Ceramic Society, v 67, 1984, pp. 347-353.
【12】Y. Gogotsi, G. Zhou, S. S. Ku, and S. Cetinkunt, “Raman Micro spectroscopy Analysis of Pressure Induced Metallization in Scratching of Silicon,” Semiconductor Science And Technology, v 16, 2001, pp. 345-352.
【13】H. Eda, L. Zhou, H. Nakano, R. Kondo, J. Shimizu, “Development of Single Step Grinding System for Large Scale 300mm Si Wafer : A Total Integrated Fixed-Abrasive Solution.” Annals of the CIRP, v 50, n1, 2001,pp. 225-228.
【14】T. Nakasuji, S. Kodera, S. Hara, H. Matsunaga, N. Ikawa and S. Shimada, “Diamond turning of brittle materials for optical components.” Annals of the CIRP, v 39, n1, 1990, pp. 89-92.
【15】K. E. Puttick, L. C. Whitmore, C. Ycynes and A. E. Gee, Proc. ASPE Spring Topical Meeting on Precision Grinding of Brittle Materials, 1996, pp. 82
【16】P. Blake and R. O. Scattergood, “Ductile Regime Machining of Germanium and Silicon,” Journal of the American Ceramic Society, v 73, 1990, pp. 949-957.
【17】K. E. Puttick, M. R. Rudman, F. A. Smith, and K. Lindsey, “Single Point Diamond Machining of Glasses,” Proc., Royal Soc. A. 426, 1989, pp. 19-30.
【18】D. B. Marshall and B. R. Lawn, “Indentation of Brittle Materials,” Micro-indentation Tech. in Materials Science and Engineering, ASTM STP 889, 1986.
【19】T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile Regime Grinding : A New Technology for Machining Brittle Materials,” Journal of Engineering for Industry, Transactions of the ASME, v113, 1991, pp.184-189.
【20】W. Blackley, and R. Scattergood, “Crystal Orientation Dependence of Machining Damage – A Stress Model.” Journal of the American Ceramic Society, v 73, n 10, 1990, pp. 3113-3115.
【21】T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile Regime Turning Mechanism of Single Crystal Silicon,” Precision Engineering, v 18, 1996, pp.129-137.
【22】S. Malkin and T. W. Hwang, “Grinding Mechanisms for Ceramics,” Annals of the CIRP, v 45, 1996, pp.569-580.
【23】L. C. Zhang and N. Yasunaga, Advances in Abrasive Technology, World Scientific Publishing Co. Pte. Ltd, Singapore, 1997, pp. 33-42.
【24】C. Jeynes, K. E. Puttick, L. C. Whitmore, K. Gartner, A. E. Gee, D. K. Millen, R. P. Webb, R. M. A. Peel, and B. J. Sealy, “Laterally Resolved Crystalline Damage in Single-Point Diamond-Turned Silicon,” Nuclear Instruments and Methods in Physics Research B, v 40, 1996, pp. 431-436.
【25】L. Q. Chen, X. Zhang, and T. Y. Zhang, “Micro-Raman Spectral Analysis of the Subsurface Damage Layer in Machined Silicon Wafers,” Journal of Materials Research, v 15, No. 7, 2000, pp. 1441-1444.
【26】Y. L. Tsai and J. J. Jr. Mecholsky, “Fractal Fracture of Single Crystal Silicon,” Journal of Materials Research, v 6, No. 6, 1991, pp. 1248-1263.
【27】Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding Induced Subsurface Cracks in Silicon Wafers,” International Journal of Machine Tools & Manufacture, v 39, 1999, pp. 1103-1116.
【28】L Wei, H. S. Ahn, Manufacturing Science and Engineering, v 68, 1994, pp.923.
【29】H. K. Xu, Lanhua Wei, and Said Jahanmir, “Grinding Force and Micro-crack Density in Abrasive Machining of Silicon Nitride,” J. Mater. Res., v 10, n 12, 1995, pp 3204-3208.
【30】D. P. H. Hasselman, J. Composite Mater., v 12, 1978, pp.403.
【31】Y. Nakano, K. Ota, “Thermal Deformation of Workpieces During Surface Grinding and Profile Errors of Finished Workpieces.” JSPE 39, 1973, pp.225-229.
【32】Tsunemoto Kuriyagawa, Katsuo Syoji, Hideo Ohshita, “Grinding Temperature Within Contact Arc Between Wheel and Workpiece in High-Efficiency Grinding of Ultrahard Cutting Tool Materials.” Journal of Materials Processing Technology, v 136, 2003, pp.39-47.
【33】K. W. Sharp, M. H. Miller, and R. O. Scattergood, “Analysis of the Grain Depth of Cut in Plunge Grinding,” Journal of the International Societies for Precision Engineering and Nanotechnology, v 24, 2000, pp. 220-230.
【34】黃弘毅,“矽晶圓超精密輪磨之研究”,國立台灣大學碩士論文,2003
【35】G. G. Stoney, “The Tension of Thin Metallic Film Deposited by Electrolysis.” Proc. R. Soc., A 82, 1909, pp.172.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top