跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林原輝
研究生(外文):Yuan-hui Lin
論文名稱:預混平板甲烷火焰中以有機矽化合物HMDSA與HMDSO燃燒合成矽化物奈米粉體之研究
論文名稱(外文):The investigation of Combustion Synthesis of Nanosized Silicon Powder from HMDSA and HMDSO in the Premixed Methane Flat Flame
指導教授:馬小康馬小康引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:100
中文關鍵詞:奈米平板火焰氣相合成二氧化矽
外文關鍵詞:gas combustionnanoflat flameHMDSsilica
相關次數:
  • 被引用被引用:4
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用氣相燃燒合成法合成奈米等級SiO2產物,在火焰的高溫環境下有自我純化、同質成核的特性,並有可連續式生產,產物均質度較高等眾多優點。而由文獻中可知燃燒合成產物的粒徑受到火焰燃料、前置物種類、通入源濃度、火焰溫度、燃燒器種類等眾多因數的影響。本文在甲烷火焰中通入不同的矽前置源HMDSA(C6H19NSi2)與HMDSO(C6H18OSi2),並藉由平板燃燒器火焰結構穩定、火焰溫度分佈平均的特性,探討當量比與濃度變化對奈米產物粒徑的影響。
The Gas-phase combustion synthesis of nanosized silicon can makes continuously high-purity product by the property of self-purifying and homologous nucleation. Previous studies show that the diameter of product is influenced by some experimental parameters, such as fuel, precursor, concentration, reaction temperature, and reaction burner. This study adds HMDSA and HMDSO into the premixed methane flat flame burner to establish the relationship of silicon product diameter under the different fuel-air ratio, concentration of precursor, and the others operation conditions.
第1章 導論 1
1.1 前言 1
1.1.1 奈米材料種類及應用 1
1.1.2奈米材料特性 2
1.1.3奈米科技產業 4
1.2 研究動機與目的 5
1.3文獻回顧 7
第2章 反應機構的探討 12
2.1 HMDS介紹 12
2.2 化學反應機構 12
2.2.1 化學反應機構簡介 12
2.2.2反應機構與反應速率關係 13
2.3 HMDS反應機構和甲烷燃燒反應機構介紹 15
2.3.1 HMDS燃燒反應機構 15
2.3.2甲烷燃燒反應機構 17
第3章實驗研究方法 19
3.1 實驗架構和參數定義 19
3.2 實驗設備 20
3.2.1 燃燒器系統 20
3.2.2 燃料輸送系統 21
3.2.3 其他設備 22
3.3 實驗步驟 22
3.3.1 實驗前之準備 22
3.3.2 實驗操作條件 23
3.3.4 火焰之定量量測及定性觀察 24
3.3.5 燃燒產物的收集與分析 24
3.4 儀器校正 25
3.4.1 流量計校正 25
3.4.2 熱電偶校正 26
第4章 結果與討論 28
4.1 通入HMDS之甲烷火焰特性 28
4.1.1 火焰結構 28
4.1.1.1 前置物種類及濃度的影響 28
4.1.1.2 燃料當量比的影響 29
4.1.2 火焰溫度分佈及趨勢 31
4.1.2.1 本生式燃燒器的軸向火焰溫度分佈 31
4.1.2.2平板式燃燒器的軸向火焰溫度分佈 33
4.1.2.3平板式燃燒器的徑向火焰溫度分佈 34
4.2 產物分析 35
4.2.1 EDS(能量散布光譜儀) 36
4.2.2 XRD(X光繞射儀) 36
4.2.3 TEM(穿透式電子顯微鏡) 36
4.2.4 BET(吸附式路徑量測儀) 37
4.3 燃燒產物粒徑分析 38
4.3.1 前置物種類及濃度對產物粒徑的影響 39
4.3.2 當量比對產物粒徑的影響 40
4.3.3 燃燒器種類對產物粒徑的影響 40
第5章 結論和建議 42
5.1結論 42
5.2建議 44
參考文獻 45
附 錄 87
A 相關精密儀器的介紹 87
A.1 EDS(能量散布光譜儀) 87
A.2 XRD(X光粉末繞射儀) 89
A.3 TEM(穿透式電子顯微鏡) 92
A.4 BET(吸附式粒徑量測儀) 94
作者簡歷 100
1.Skandan, G., Chen, Y. J., Glumac, N., and Kear, B. H., “Synthesis of oxide nanoparticles in low pressure flames,” NanoStructured Materials, 11(2): 149-158 (1999). 1
2.Wooldridge, M.S., “Gas-phase combustion synthesis of particles,” Progress Energy Combustion Science, 24: 63-87 (1998)4.
3.陳家俊、藍榮煌,“奈米科技的發展與應用”,http://www.ssttpro. com.tw/pj30pg127.asp?Tag=4711
4.Roco, M. C., “Reviews of national research programs in nanoparticle and nanotechnology research in the U.S.A.,” Journal of Aerosol Science, 29(5/6): 749-760 (1998).37.
5.Kruis, F. E., Fissan, H., and Peled, A., “Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - a Review;” Journal of Aerosol Science, 29: 511-535 (1998). 3.
6.黃文魁,“奈米材料科技發展與在傳統產業之機會”,工研院經資中心化材組,http://www.chemnet.com.tw/magazine/200210/index4. htm。
7.Pratsinis, S. E., “Flame aerosol synthesis of ceramic powders,” Progress Energy Combustion Science, 24: 197-219 (1998). 5.
8.Stark, W. J., and Pratsinis, S. E., “Aerosol flame reactors for manufacture of nanoparticles,” Powder Technology, 126: 103-108 (2002). 13. 5.
9.Singhal, A., Skandan, G., Glumac, N., and Kear, B. H., “Minimizing aggregation effects in flame synthesized nanoparticles,” Scripta mater, 44: 2203-2207 (2001). 1
10.Britton, L. G.., “Combustion hazards of silane and its chlorides,” Plant and Operations Progress, 9: 16-38 (1990).
11.Koda, S., “Kinetic aspects of oxidation and combustion of silane and related compounds,” Progress Energy Combustion Science, 18: 513-528 (1992). 45.
12.Ulrich, G. D., “Theory of particle formation and growth in oxide synthesis flames,” Combustion Science and Technology, 4: 47-57 (1971). 8.
13.Ulrich, G. D., Milnes, B. A., and Subramanian, N. S., “Particle growth in flames. II: Experimental results for silica particles,” Combustion Science and Technology, 14: 243-249 (1976). 9.
14.Ulrich, G. D., and Subramanian, N. S., “Particle growth in flames III: Coalescence as a rate-controlling process,” Combustion Science and Technology, 17: 119-126 (1977). 10.
15.Ulrich, G. D., and Riehl, J. W., “Aggregation and growth of submicron oxide particles in flames,” Journal of Colloid and Interface Science, 87(1): 257-265 (1982). 63.
16.Ulrich, G. D., “Flame synthesis of fine particles,” Chemical and Engineering News, 62(32): 22-29 (1984). 67.1.
17.Chung, S. L., and Katz, J. L., “The counterflow diffusion flame burner: a new tool for the study of the nucleation of refractory compounds,” Combustion and Flame, 61: 271-284 (1985).59.
18.Koda, S., and Fujiwara, O., “Silane combustion in an opposed jet diffusion flame,” Twenty-first Symposium (International) on Combustion, The Combustion Institute, pp.1861-1867 (1986). 32.
19.Koda, S., and Fujiwara, O., “A study of inhibition effects for silane combustion by additive gases,” Combustion and Flame, 73: 187-194 (1988). 31.
20.Zachariah, M. R., Chin, D., Semerjian, H. G., and Katz, J. L., “Silica particle synthesis in a counterflow diffusion flame reactor,” Combustion and Flame, 78: 287-298 (1989). 35.
21.Chung, S. L., Tsai, M. S., and Lin, H. D., “Formation of particles in a H2-O2 counterflow diffusion flame doped with SiH4 or SiCl4,” Combustion and Flame, 85: 134-142 (1991). 18.8.
22.Chagger, H. K., Hainsworth, D. , Patterson, P. M., Pourkashanian, M., and Williams, A., “The formation of SiO2 from hexamethyldisiloxane combustion in counterflow methane-air flames,” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, pp. 1859-1865 (1996). 7.0.
23.Ehrman, S. H., Friedlander, S. K., and Zachariah, M. R., “Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame,” Journal of Aerosol Science, 29: 687-706 (1998).66
24.Briesen, H., Fuhrmann, A., and Pratsinis, S. E., “The effect of precursor in flame synthesis of SiO2,” Chemical Engineering Science, 53(24): 4105-4112 (1998). 14.
25.Glumac, N. G., “Formation and consumption of SiO in powder synthesis flames,” Combustion and Flame, 125: 702-711 (2001).12
26.Zhao, E., Ma, H. K. and Fang, L. W., “Combustion synthesis of SiO2 particles from hexamethyldisilazane (HMDS) and hexamethyldisiloxane (HMDSO),” Twenty-eighth Symposium (International) on Combustion, The Combustion Institute, Poster (2000).
27.Yeh, C. L., Zhao, E., and Ma, H. K., “Combustion synthesis of SiO2 on the aluminum plate,” Journal of Thermal Science, 10(2): 92-96 (2001).
28.Yeh, C. L., Zhao, E., and Ma, H. K., “An experimental investigation of combustion synthesis of silicon dioxide particles (SiO2) in premixed flames,” Combustion Science and Technology, 173: 25-46 (2001).
29.Yeh, C. L., Zhao, E., Ma, H. K., and Fang, L. W., “Further studies on combustion synthesis of SiO2 particles from hexamethyldisilazane (HMDSA) and hexamethyldisioxane (HMDSO) with hydrogen fuels,” The Third Asia-Pacific Conference on Combustion, pp.393-396 (2001).
30.Wooldridge, M. S., Torek, P. V., Donovan, M. T., Hall, D. L., Miller, T. A., Palmer, T. R., and Schrock, C. R., ”An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combustion and Flame, 131: 98-109 (2002).49
31.Ma, H. K., Zhao, E., Yeh, C. L., and Chung, K. M., “The formation of nano-size thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO)”, Journal of Thermal Science, 12(1): 89-96 (2003).
32.張榮興,“基本化學反應工程學”,科技圖書股份有限公司,民國72年。
33.徐念文,“反應工程”,三民書局,民國69年。
34.林俊一,“反應工程學”,文京圖書有限公司,民國81年。
35.Nobert, P., and Bernd, R., “Reduced Kinetic Mechanisms for Application in Combustion Systems,” Springer-Verlag, ISBN: 3-540-56372-5 (1992).
36.Hodgman, C. D., and Weast, R. C., “Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data,” Chemical Rubber Pub. Co. (1964).
37.Axelbaum, R. L., Lottes, C. R., Huertas, J. I., and Rosen, L. J., “Gas-phase combustion synthesis of aluminum nitride powder,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, pp.1891-1897 (1996).
38.方立文,“利用HMDS在丙烷火焰中合成SiO2的研究”,國立台灣大學碩士論文,民國90年。
39.Touloukian, Y. S., DeWitt, D. P., and Hernicz, R. S., “Thermal radiative properties – Coatings,” Thermophysical Properties of Matter, 9 (1972).
40.林敬二、林宗義,”儀器分析”,美雅書版股份有限公司民國83年。
41.汪建民,“材料分析”,中國材料科學學會,民國89年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top