(3.238.173.209) 您好!臺灣時間:2021/05/16 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃志成
研究生(外文):Jui-Cherng Huang
論文名稱:時效與溫度對鍛造、粉末冶金和顆粒強化6061鋁合金複合材料之疲勞裂縫擴展之性質探討
論文名稱(外文):Effect of Temper and Test Temperature on Fatigue Crack Growth Properties of IM, PM and Particulate Reinforced 6061 Al Metal Matrix Composites
指導教授:單秋成單秋成引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:223
中文關鍵詞:溫度疲勞裂縫生長時效高峰應力顆粒破裂介面脫開
外文關鍵詞:ParticulateOverloadFatigue crack growthInterfacialTemperatureTemper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對IM6061鋁合金、PM6061鋁合金與添加強化材SiC顆粒之6061複合材料,在T4與T6不同時效條件下,與不同之溫度環境25 0C、200 0C、250 0C與300 0C下,對靜態拉伸及等應力疲勞實驗與單一高峰應力疲勞實驗之破壞行為作一系列之研究,研究方法包括實驗分析、SEM之破壞機制觀察與TEM之微觀結構之分析。
在拉伸實驗部分,T4時效材料比起T6時效材料有較小之降伏強度和抗拉強度與較大之伸長率,在室溫時T6-PM鋁合金優異於T6-IM鋁合金之趨勢與T6-20%複合材料優異於T6-PM鋁合金之趨勢,在200 0C測試溫度時已大幅的降低,尤其當溫度提高到300 0C 的測試溫度之時,兩鋁合金與複合材料之間幾乎不存在差異。
在等力量疲勞裂縫生長實驗方面,不論是T4或T6時效處理,LT型態之試片比起TL型態有較佳之抗疲勞生長能力。而且兩型態試片之差異隨著溫度之增加而減少,在300 0C時,兩型態試片之間已經沒有差異了。在所有之試驗溫度中,PM鋁合金比起IM鋁合金表現較差之抗疲勞生長能力,它們的抗疲勞生長能力隨著溫度之增加而降低。從複合材料之疲勞破斷面的特徵發現在低�寐負載時有較少之破裂SiC顆粒出現,而在高�寐負載時則有較多之破裂SiC顆粒出現,尤其是T4時效材料之破斷面特徵為更少之破裂SiC顆粒出現。在所有之溫度試驗中,PM鋁合金比起複合材料有較低之抗疲勞生長能力。而在最高溫度300 0C之複合材料疲勞破斷面,破裂SiC顆粒特徵愈少了,而介面脫開之情況特徵更多了。
高峰應力疲勞裂縫生長實驗方面,T4時效之材料試片與LT型之試片有較大之遲滯循環數Nr、延遲遲滯循環數Ndr、及較長之遲滯裂縫長度ar、延遲遲滯裂縫長度adr,尤其以T4時效之鍛造鋁合金最突出。粉末冶金鋁合金和添加強化材顆粒之複合材料比較容易產生彎月形高峰應力撕裂區域特徵,而後者因強化材顆粒破裂之作用更易產生撕裂區域特徵。試驗溫度愈高將會有較高之加速比與較差之減速比效應,IM材料在250 0C時其減速比在OLR等於1.5與1.75時分別為36%與11%,相對應之200 0C之值則為12%與3%。在較高之250 0C環境持溫3小時之減速比在OLR等於1.5時則成為46%,而加速比則從2.25增加到2.85倍。


The tensile, fatigue crack growth properties and overload retardation phenomenon of 6061 Al alloy fabricated by ingot metallurgy (IM), powder metallurgy (PM) routes and SiC particulate reinforced 6061 composites have been evaluated in both T4 and T6 tempers at temperatures ranging from 25 to 300 0C. In order to characterize the fracture behavior of the materials, the microstructure was observed by transmission electron microscope (TEM) and fracture surfaces of the specimens were examined with a scanning electron microscope (SEM).
At 25 0C, the PM alloy and composites possess a higher strength, higher strain hardening rate and a lower elongation than the IM alloy and PM alloy, respectively. Raising the testing temperature from 25 to 200 0C greatly reduced the advantage in strength of the PM alloy and composites over that of the IM alloy and PM alloy, respectively. At 300 0C, both alloys and composites possess similar strength.
The fatigue crack growth resistance in the TL orientation is inferior to that in the LT orientation for both alloys and composites in T4 and T6 tempers. The difference in crack growth resistance between the two orientations decreases with increasing temperature and is basically non-existent at 300 0C. Furthermore, the fatigue crack growth resistance in the T6 temper is superior to that in the T4 temper. In both alloys, fatigue crack growth resistance decreases with increasing temperature. At all temperatures, the PM alloy always has an inferior crack growth resistance as compared to the IM alloy. At low �寐 levels, the proportion of SiC particulates on the fracture surfaces was much smaller than that at high �寐 levels. Damage of composites was characterized by cracked particulate at low and intermediate temperatures and interfacial debonding at high temperature.
It is evident that the extent of overload affected zone and amount of retardation was larger in T4 specimens and increased with the overload ratio (OLR), especially for the T4-IM alloy. A crescent shaped overload stretch zone was formed in the central region of the specimens in the T6-PM and composites, especially for the composites, where the crack particulate dominated. By raising the testing temperature, the momentary acceleration was increased and the maximum retardation decreased. For the T6-IM alloy, the maximum retardation became 12% and 3% at 200 0C for OLR=1.5 and 1.75, respectively, while that became 36% and 11% at 250 0C. If the overload was held for 3 hrs at 250 0C, the maximum retardation became 46% at OLR=1.5, while that momentary acceleration also increased from 2.25 to 2.85 times.


目錄
誌謝 v
摘要 vi
Abstract vii
目錄 viii
圖例 xii
表格 xxi
第一章 緒 論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法 3
1.4 本文架構 4
第二章 破壞力學與鋁基複合材料簡介 5
2.1 前言 5
2.2 破壞力學概念 5
2.2.1 應力強度因子(Stress Intensity Factor) 6
2.2.2 裂縫尖端塑性(Crack Tip Plasticity) 7
2.3 疲勞裂縫生長 8
2.3.1 Paris’s Law 8
2.3.2 循環負載下裂縫尖端之彈塑性行為 9
2.4 裂縫封閉現象 10
2.4.1 裂縫封閉機制 10
2.4.2 Elber修正式 12
2.5 高峰應力減速現象 13
2.6 鋁基複合材料製程簡介 14
2.7 鋁合金粉末的製備 15
2.8 鋁合金粉末之除氣 16
2.9 鋁合金之燒結 17
2.9.1 陶瓷強化相與金屬母材的潤溼現象 17
2.9.2 強化相與金屬母材的介面性質 18
2.10 熱擠型製程 19
2.10.1. 動態回復 20
2.10.2 動態再結晶 20
2.10.3 靜態回復與靜態再結晶 21
2.11 時效熱處理 22
第三章 實驗方法與材料試片之製備 40
3.1 前言 40
3.2 實驗材料之製備 40
3.2.1 混粉(mixing) 40
3.2.2 冷均壓成型(cold isostatic pressing) 40
3.2.3 真空燒結(vacuum sintering) 40
3.2.4 熱擠型(hot extrusion) 41
3.2.5 密度測量 41
3.2.6 金相顯微組織觀察 42
3.2.7 試片製作與規格 43
3.2.8 時效熱處理 44
3.3 拉伸實驗 44
3.3.1 室溫拉伸實驗 44
3.3.2 高溫拉伸實驗 45
3.4 拉伸疲勞裂縫生長實驗 45
3.4.1 室溫等力量振幅(DP=const) 46
3.4.2 室溫等應力強度因子幅(DK=const) 46
3.4.3 高溫等力量振幅(DP=const) 47
3.4.4 高溫等應力強度因子幅(DK=const) 47
3.4.5 疲勞裂縫封閉效應之量測 47
3.4.6 數據分析 49
3.5 破斷面觀察與微觀結構 49
第四章 拉伸實驗 61
4.1 前言 61
4.2 室溫拉伸實驗 61
4.2.1 PM 和 IM 鋁合金 61
4.2.2 PM鋁合金和複合材料 62
4.3 高溫拉伸實驗 65
4.3.1 PM 和 IM 鋁合金 65
4.3.2 PM鋁合金和複合材料 67
4.4 本章結論 69
第五章 等力量振幅疲勞裂縫生長實驗 88
5.1 前言 88
5.2 IM和PM鋁合金 89
5.2.1 室溫等力量振幅疲勞裂縫生長實驗 89
5.2.1.1 試片裂縫方向之影響 89
5.2.1.2 時效之影響 90
5.2.2 高溫等力量振幅疲勞裂縫生長實驗 93
5.2.2.1 試片裂縫方向之影響 93
5.2.2.2 溫度環境之影響 93
5.3 PM鋁合金與複合材料 95
5.3.1 室溫等力量振幅疲勞裂縫生長實驗 95
5.3.1.1 試片裂縫方向之影響 95
5.3.1.2 時效之影響 96
5.3.2 高溫等力量振幅疲勞裂縫生長實驗 98
5.3.2.1 體積比之影響 98
5.3.2.2 溫度之影響 99
5.4 本章結論 102
第六章 等應力強度因子幅(DK=const)高峰應力疲勞實驗 136
6.1 前言 136
6.2 IM和PM鋁合金 137
6.2.1 室溫等應力強度因子幅高峰應力疲勞裂縫生長實驗 137
6.2.1.1 試片裂縫方向之影響 137
6.2.1.2 時效之影響 138
6.2.1.3 高峰應力比之影響 140
6.2.1.4 裂縫路徑與破斷面 141
6.2.2 高溫等應力強度因子幅高峰應力疲勞裂縫生長實驗 148
6.2.2.1 溫度環境之影響 148
6.2.2.2 高峰應力比之影響 149
6.2.2.3 持溫時間之影響 149
6.3 PM鋁合金與複合材料 150
6.3.1 室溫等應力強度因子幅高峰應力疲勞裂縫生長實驗 150
6.3.1.1 體積比之影響 150
6.3.1.2 高峰應力比之影響 151
6.3.1.3 時效之影響 151
6.3.1.4 裂縫路徑與破斷面 152
6.4 本章結論 159
第七章 結論與未來發展 210
參考文獻 214
附錄 作者簡歷 225


圖例
Fig. 2.1 Irwin’s notational crack and plastic zone size. 25
Fig. 2.2 Relation of the stress intensity factor DK and crack growth rate da/dN. 25
Fig. 2.3 Stress distribution of crack tip in cyclic loading. 26
Fig. 2.4 Mechanisms of crack closure. ( a. residue plastic wake, b. oxide , c. crack tip shielding, d. micro-roughness, e. fluid pressure, f. phase transformation. ) 26
Fig. 2.5 Phenomena of the crack closure in cyclic loading. 27
Fig. 2.6 Overload induced deceleration, (a) relation of time and load, (b) relation of da/dN and number of cycles N. 28
Fig. 2.7 Schematic diagram of the powder metallurgy processing of Al alloy and SiC reinforced composites. 29
Fig. 2.8 SEM photographs of the reinforcement SiC particulates. 30
Fig. 2.9 Sintering diagram of the 6061 Al alloy and MMC. 30
Fig. 2.10 Morphology and cross-section of the 6061 Al powders and the distribution of the particles size. 30
Fig. 2.11 Schematic of Al alloy powder surface oxides. 31
Fig. 2.12 Generalized illustration of Al alloy powder degassing events. 32
Fig. 2.13 The solid-liquid-vapor equilibrium of the relation between the contact angle and the three interfacial energies. 32
Fig. 2.14 The effect on the two extremes of contact angle. 33
Fig. 2.15 Deacrawax diagram. 33
Fig. 2.16 TGA analysis of the Al powder. 34
Fig. 2.17 DTA of the 6061 Al powder. 34
Fig. 2.18 Calibration of oxygen and nitrogen content in sintered 6061 Al alloy and MMC. 35
Fig. 2.19 OM of the CIP and sintering 6061 Al billet. (a) CIP=3000kg/cm2, (b) sintered, temp.=6300C, time=4hr, d=0.95dT, ( c ) sintered, temp.=6400C, time=6hr, d=0.97dT. 35
Fig. 2.20 Phenomenon of dynamic and static structure in hot working process. 36
Fig. 2.21 Comparison of the heat flow of precipitation reactions in Al alloy and its composite with different extrusion ratio. 37
Fig. 3.1 Detail equipment of vacuum sintering furnace. 51
Fig. 3.2 Configuration of the hot extrusion die. 52
Fig. 3.3 Optical microstructure of the (a) un-etched and (b) etched PM 6061 Al alloy under T6 aging condition. 52
Fig. 3.4 Optical microstructure of the (a) un-etched and (b) etched 10%-SiC-MMC under T6 aging condition. 53
Fig. 3.5 Optical microstructure of the etched 20%-SiC-MMC under T6 aging condition. 54
Fig. 3.6 Optical microstructure of the (a) un-etched and (b) etched IM 6061 Al alloy under T6 aging condition. 55
Fig. 3.7 Optical microstructure of the (a) T6-IM and (b) T6-10%-SiC-MMC. 56
Fig. 3.8 Small scale of tensile specimens. (a) room temperature, (b) elevated temperature. 57
Fig. 3.9 Small scale of CT specimen 57
Fig. 3.10 Relation between hardness and aging time for MMC, PM and IM 6061 Al alloy. 58
Fig. 3.11 Orientation types of CT specimens. 58
Fig. 3.12 Principle of the offset procedure to facilitate the measurement of crack closure. 59
Fig. 3.13 P-d�c traces of crack closure phenomenon. (a) P-�� curves, (b) P-���c curves. Arrows indicate the crack opening point. 60
Fig. 4.1 Tensile properties of PM 6061 Al alloy in the T4, Under, T6 and Over aging conditions. 71
Fig. 4.2 Room temperature stress-strain curves of PM and IM 6061 Al alloys in the T4 and T6 tempers. 71
Fig. 4.3 Transmission electron micrograph showing (a) T4-IM, fine dispersoids pinned dislocation (b) T6-PM, alumina particles dispersed along prior powder boundary (c) T6-IM, larger constituent and fine dispersoids (d) T6-PM, alumina on grain boundary and within grain. 72
Fig. 4.4 Room temperature stress-strain curves of PM, 10%-SiC and 20%-SiC reinforced 6061 Al alloys in the T4 and T6 tempers. 72
Fig. 4.5 Tensile properties of PM 6061 Al, 10%-SiC MMC, 20%-SiC MMC on T4 and T6 aging condition. 73
Fig. 4.6 Microstructure of the interaction between particulate and matrix (a), (b) 10% and (c), (d) 20%-SiC reinforced 6061 Al in the T6 aging condition. The extrusion direction is from right toward left. 73
Fig. 4.7 Comparison of percentage increment sy, suts and ef at 10% and 20% composites with respect to 0%-SiC under T4 and T6 treatment. 74
Fig. 4.8 Tensile fracture surfaces of the IM, PM, 10% and 20%-SiC reinforced 6061 Al alloy in the T4 and T6 aging conditions. 75
Fig. 4.9 OM and tensile fracture surface of the 10%-SiC-MMC in T6 aging. (a) fractured morphology, and OM of longitudinal section, (b) before test, (c) after test and (d) distance from fracture surface 2-3 mm. 76
Fig. 4.10 OM and tensile fracture surface of the 20%-SiC-MMC in T6 aging. (a) fractured morphology, (b) after test and (c) distance from fracture surface 2-3 mm. 76
Fig. 4.11 Comparison of hardness change after pre-heating/soaking and fatigue testing at various temperatures for the PM and IM 6061 Al alloys. 77
Fig. 4.12 Transmission electron micrograph showing fine needle precipitates and coarse rod precipitates and precipitate free zones in both alloys under 200 0C and 300 0C. 78
Fig. 4.13 Stress-strain curves of PM and IM 6061 Al alloys under different temperatures. 78
Fig. 4.14 Comparison of percentage change in elevated temperatures sy, �綦ts and ef of T6 PM and IM 6061 Al alloys with respect to that at 25 0C. 79
Fig. 4.15 Transmission electron micrograph showing fine precipitates and coarse rod precipitates in both alloys under 25 0C and 300 0C. 79
Fig. 4.16 Tensile fracture surfaces of the T6 IM and PM 6061 alloys at 200 0C and 300 0C conditions. They show ductile failure by the nucleation, growth, and coalescence of voids around the fractured constituent FeSiAl. 80
Fig. 4.17 Higher magnification of the tensile fracture surface in the T6 PM 6061 alloy at 25 0C, 200 0C and 300 0C conditions. They show microvoids nucleate from the larger oxide stringer in the matrix. 80
Fig. 4.18 Dimple voids of the tensile fracture surface in the PM and IM 6061 alloys under both tempers at 25 0C. 81
Fig. 4.19 Dimple voids of the tensile fracture surface in the PM and IM 6061 alloys at 25 0C, 200 0C and 300 0C conditions under T6 temper. 81
Fig. 4.20 Comparison of hardness change after pre-heating/soaking and fatigue testing at various temperatures for the PM, 10%-SiC and 20%-SiC composites. 82
Fig. 4.21 Transmission electron micrograph showing fine needle precipitates and coarse rod precipitates in PM alloy and 20%-SiC-MMC under 250 0C and 300 0C. 82
Fig. 4.22 Stress-strain curves of PM, 10% and 20%-SiC reinforced 6061 Al alloys under different temperatures. 83
Fig. 4.23 Comparison of percentage change in elevated temperatures sy, suts and ef of T6 PM, 10% and 20%-SiC reinforced 6061 Al alloys with respect to that at 25 0C. 84
Fig. 4.24 Transmission electron micrograph showing fine needle precipitates and coarse rod precipitates in 20%-SiC-MMC under 200 0C, 250 0C and 300 0C. 84
Fig. 4.25 Tensile fracture surfaces of the PM, 10% and 20% SiC reinforced 6061 Al alloy at 25 0C, 200 0C and 300 0C in T6 aging. 85
Fig. 4.26 Dimple voids of the tensile fracture surface in the 10% and 20%-SiC MMC under both tempers at 25 0C. 86
Fig. 5.1 Comparison of da/dN versus DK for the IM and PM alloys in both the LT and TL orientations under the (a) T4 and (b) T6 treatment at room temperature. 105
Fig. 5.2 Comparison of (a) da/dN versus DK, (b) crack closure intensity versus DK and (c) da/dN versus DKeff of the IM alloy under the T4 and T6 heat treatments in the LT and TL orientations. 106
Fig. 5.3 Comparison of (a) da/dN versus DK, (b) crack closure intensity versus DK and (c) da/dN versus DKeff of the IM and PM alloys under the T4 and T6 heat treatments in the LT orientation. 107
Fig. 5.4 Room temperature fatigue fracture surfaces in TL orientation for T6-IM alloy at (a) U=0.65, (b) U=0.43, (c) U=0.78. 109
Fig. 5.5 Room temperature fatigue fracture surfaces in LT-orientation for T6-IM alloy at (a) U=0.52 (b) U=0.42 (c) U=0.78. 109
Fig. 5.6 Room temperature fatigue fracture surfaces in LT-orientation for T6-PM alloy at (a) U=0.45 (b) U=0.66 (c) U=0.83. 110
Fig. 5.7 Fractography of the T6-IM-LT type alloy, (a) plane strain U=0.42 (b) plane stress (c) plane strain U=0.52 (d) plane stress. 110
Fig. 5.8 Planes of tmax in plane stress and plane strain states. 111
Fig. 5.9 Plastic zone size of shear mode and tensile mode on low and high DK, Kmax. 112
Fig. 5.10 Parabolic curved crack front due to plane strain and plane stress effect. 112
Fig. 5.11 Fatigue fracture surface of the T6-IM alloy at (a) near edge region and (b) central region. 113
Fig. 5.12 Comparison of oxygen content in the fatigue fracture surface at PM and IM alloys between edge and middle region at 25 0C. 113
Fig. 5.13 Fatigue striation pattern of T6-IM-LT type alloy. 114
Fig. 5.14 Fatigue striation pattern of T6-IM-TL type alloy. 114
Fig. 5.15 Comparison of da/dN versus DK for the IM and PM alloys in both the LT and TL orientations under the T6 treatment at (a) 200 0C, (b) 250 0C and (c) 300 0C conditions. 115
Fig. 5.16 Comparison of (a) da/dN versus DK, (b) crack closure intensity versus DK and (c) da/dN versus DKeff of the IM and PM alloys at 25 0C, 200 0C, 250 0C and 300 0C under the T6 heat treatments in the LT orientation. 117
Fig. 5.17 Crack profile for specimens at (a) 25 0C, (b) 200 0C, (c) 250 0C and (d) 300 0C. 118
Fig. 5.18 Fatigue fracture surfaces at 200 0C of T6-IM-TL (a) U=0.62 (b) U=0.58 (c) U=0.80 and T6-IM-LT (d) U=0.60 (e) U=0.55 (f) U=0.73. 119
Fig. 5.19 Fatigue fracture surfaces at 250 0C of T6-PM-TL (a) U=0.73 (b) U=0.68 (c) U=0.82 and T6-PM-LT (d) U=0.70 (e) U=0.66 (f) U=0.80. 120
Fig. 5.20 Fatigue fracture surfaces at 300 0C of T6-IM alloy (a) U=0.82 (b) U=0.78 (c) U=1.0 and T6-PM alloy (d) U=0.97 (e) U=0.98 (f) U=1.0 121
Fig. 5.21 Morphology of Al2O3 particles on contact region in T6-IM alloy fatigue fracture surface. 122
Fig. 5.22 Comparison of oxygen content in the fatigue fracture surface at PM and IM alloys between edge and middle region at 300 0C. 122
Fig. 5.23 Comparison of da/dN versus DK for the 0%, 10% and 20% SiC composites in both the LT and TL orientations under the (a) T4 and (b) T6 treatment at room temperature. 123
Fig. 5.24 Comparison of (a) da/dN versus DK, (b) crack closure intensity versus DK and (c) da/dN versus DKeff of the 0%, 10% and 20% SiC reinforced composites under the T4 and T6 heat treatments in the LT orientation. 124
Fig. 5.25 Fractography of the T4-LT type 10%-SiC-MMC, (a) U=0.64 (b) U=0.61 (c) U=0.73 (d) no U. 126
Fig. 5.26 Fractography of the T6-LT type 10%-SiC-MMC, (a) U=0.6 (b) U=0.42 (c) U=0.78 (d) no U. 126
Fig. 5.27 Fractography of the T6-TL type 10%-SiC-MMC, (a) U=0.66 (b) U=0.61 (c) U=0.63 (d) no U. 127
Fig. 5.28 Room temperature fatigue fracture surfaces in LT-orientation, for T4-20% composite at (a) U=0.51 (b) U=0.59 (c) U=0.82 and T6-20% composite (d) U=0.43 (e) U=0.54 (f) U=0.69. 127
Fig. 5.29 Fatigue striation pattern of T6-PM alloy, (a) U=0.8 (b) U=0.9 and 10%-SiC-MMC, (c) U=0.7 (d) U=0.8 128
Fig. 5.30 Fractography pattern of interface between reinforcement SiC and Al matrix in 10%-SiC-MMC. 129
Fig. 5.31 Comparison of da/dN versus DK for the 0%, 10% and 20% SiC reinforced composites in both the LT and TL orientations under the T6 treatment at (a) 200 0C, (b) 250 0C and (c) 300 0C conditions. 129
Fig. 5.32 Comparison of (a) da/dN versus DK, (b) crack closure intensity versus DK and (c) da/dN versus DKeff of the 0%, 10% and 20% SiC reinforced composites at 25 0C, 200 0C, 250 0C and 300 0C under the T6 heat treatments in the LT orientation. 131
Fig. 5.33 Fatigue fracture surfaces of the T6-10% composites at 200 0C (a) U=0.63 (b) U=0.65 (c) U=0.78 and T6-20% composites at 200 0C (d) U=0.53 (e) U=0.65 (f) U=0.74. 133
Fig. 5.34 Fatigue fracture surfaces of the T6-10% composites at 250 0C (a) U=0.73 (b) U=0.76 (c) U=0.83 and T6-20% composites at 250 0C (d) U=0.68 (e) U=0.72 (f) U=0.85. 134
Fig. 5.35 Fatigue fracture surfaces of the T6-10% composites at 300 0C (a) U=0.88 (b) U=0.85 (c) U=1.0 and T6-10% composites at 300 0C (d) U=0.86 (e) U=0.83 (f) U=1.0. 135
Fig. 5.36 Fracture particles of near edge fracture surface and middle region in 20%-SiC-MMC, (a) (c) small amount particles, and (b) (d) large amount particles. 135
Fig. 5.37 Morphology of the micro-crack, striation, debonded and intergranular cracking on the T6-20% composites in LT-orientation tested at different temperatures, (a) 25 0C, (b) 200 0C, and (c), (d) 300 0C. 136
Fig. 6.1 Schematic illustration of the (a) Nr retarded cycles, (b) ar retarded crack length,RT retarded ratio,AT accelerated ratio, on overload fatigue crack growth. 162
Fig. 6.2 Crack growth transients (a) and crack closure transients (b) for the PM and IM alloys in both the LT and TL orientations under the T4 treatment at OLR=1.5. Crack length at overload position was taken as zero. 163
Fig. 6.3 Crack growth transients (a) and crack closure transients (b) for the PM and IM alloys in both the LT and TL orientations under the T4 treatment at OLR=1.75. Crack length at overload position was taken as zero. 164
Fig. 6.4 Crack growth transients for the PM and IM alloys in both the LT and TL orientations under the T6 treatment at (a) OLR=1.5 and (b) OLR=1.75. Crack length at overload position was taken as zero. 165
Fig. 6.5 Crack growth transients (a) and crack closure transients (b) for the IM alloys under the T4 and T6 treatments in the LT orientation at OLR=1.5 and 1.75. Crack length at overload position was taken as zero. 166
Fig. 6.6 Crack growth transients (a) and crack closure transients (b) for the PM alloys under the T4 and T6 treatments in the LT orientation at OLR=1.5 and 1.75. Crack length at overload position was taken as zero. 167
Fig. 6.7 Sequential overload fatigue central fracture surfaces of the T4-IM alloy at OLR=1.75. DK=13 MPa√m, R=0.1 (a) deep and large micro-crack appears just before the overload crack front, (b) U=0.5 fatigue fracture surface before overload crack front, (c) U=1 alumina wear vibrate fretting zone 0.3-0.4mm, (d) U=1 larger fretting zone, (e) U=0.39 fretting, (f),(g) U=0.15 micro-crack and small intergrain fracture, (h) U=0.31 micro-crack and big intergrain fracture. 168
Fig. 6.8 Sequential overload fatigue edge fracture surfaces of the T4-IM alloy at OLR=1.75. DK=13 MPa√m, R=0.1 (a) overload position and not continuous crack front, (b) U=1 micro-crack and large CTOD induce little fretting, (c) U=1 larger plastic deformation induce larger fretting, (d) U=1 large fretting. 169
Fig. 6.9 Schematic of the P-d" signal at OLR=1.75 overload fatigue experiment of (a) T4-IM alloy and (b) T6-IM alloy. 170
Fig. 6.10 Fatigue fracture and fast fracture surfaces on the edge (plane stress) and central (plane strain) of the T4-IM alloy specimen. 171
Fig. 6.11 Sequential overload central fatigue fracture surfaces of the T6-IM alloy at OLR=1.75. DK=11 MPa√m, R=0.1 (a) overload crack front and no micro-crack on macro-view, (b) U=0.61 micro-crack and 10 mm stretch zone after OL, (c) U=0.7 plastic deformation induce fretting, (d) U=0.68, da/dNmin and U is not minimum. 171
Fig. 6.12 Sequential overload edge fatigue fracture surfaces of the T6-IM alloy at OLR=1.75. DK=11 MPa√m, R=0.1 (a) overload crack front, (b) U=0.61 little micro-crack than center-specimen and no stretch zone, (c) U=0.7 large plastic deformation induce much fretting than center part, (d) U=0.67 little fretting on local zone. 172
Fig. 6.13 Crack front curvature and ar , (a) OLR=1.5 and (b) OLR=1.75 in T4-IM alloys. 173
Fig. 6.14 Comparison of the fracture surfaces in LT and TL type of T4-IM alloy. 173
Fig. 6.15 Sequential crack profiles for specimen at OLR=1.75. 174
Fig. 6.16 Plastic deformation shape photographed by Questar microscope after OLR=1.75 in T6-IM alloy, (a) before overloading, (b) after overloading, (c) da=0.08mm, N=1�e104cycles, (d) da=0.28mm, N=7�e104cycles. 174
Fig. 6.17 Crack profile for IM alloys in (a) T4 aging, (b) T6 aging treatment. 175
Fig. 6.18 Crack profile and CTOD in (a) Kmin loading and (b) Kmax loading in T6-IM alloy. 176
Fig. 6.19 Comparison of measured crack closure shapes in (a) P-d and (b) P-d�c with frequency of 0.5, 10, 20 Hz. 177
Fig. 6.20 Micro cracks on the fatigue fractured surfaces in T4-IM alloy. 178
Fig. 6.21 Micro cracks on the fatigue fractured surfaces in T6-IM alloy. 178
Fig. 6.22 Sequential overload central fatigue fracture surfaces of the T4-PM alloy at OLR=1.75. DK=11 MPa√m, R=0.1 (a) obscure piece-wise crack front, (b) micro-crack and local zone stretch, (c) a little fretting, (d) da/dN is decreasing. 179
Fig. 6.23 Schematic of the P-d" signal at OLR=1.75 overload fatigue experiment of (a) T4-PM alloy and (b) T6-PM alloy. 180
Fig. 6.24 Plastic deformation shape photographed by Questar microscope after OLR=1.75 in T6-PM alloy, (a) after overloading da/dN=2�e10-4mm/c, (b) da/dN=3�e10-4mm/c, (c) da/dN=3�e10-5mm/c and (d) da/dN=5�e10-5 mm/c. 181
Fig. 6.25 Comparison fracture surfaces of the LT and TL type specimens in PM alloy. 181
Fig. 6.26 Fractography of the T6-PM fracture surface on OLR=2.0, (a) fatigue fracture surface before OL, (b) stretch fracture surface after OL, (c) larger plastic deformation induce marking on fracture surface, (d) stretch zone shape after OL. 182
Fig. 6.27 Fracture surfaces of the stretched and tensile fractured at OLR=2 in T6-PM alloys. (a) dN=0 edge zone, (b) dN=1000, central zone (c) dN=0 edge zone and (d) dN=1000, central zone. 182
Fig. 6.28 Schematic diagram of the crack front in T6-PM alloy after overloading. 183
Fig. 6.29 Schematic diagram of the powder metallurgy 6061 alloy. 183
Fig. 6.30 Crack growth transients (a) and crack closure transients (b) for the T6-IM alloys in the LT orientations under different temperatures at OLR=1.5. Crack length at overload position was taken as zero. 184
Fig. 6.31 Crack growth transients (a) and crack closure transients (b) for the T6-IM alloys in the LT orientations under different temperatures at OLR=1.75. Crack length at overload position was taken as zero. 185
Fig. 6.32 Schematic of the P-d" signal at OLR=1.75 overload fatigue experiment of T6-IM alloy at (a) 200 0C and (b) 250 0C. 187
Fig. 6.33 Crack growth transients (a) and crack closure transients (b) for the T6-IM alloys in the LT orientations under different duration time at 250 0C at OLR=1.5. Crack length at overload position was taken as zero. 188
Fig. 6.34 Effect of the duration time in the P-d" signal at OLR=1.5 overload fatigue experiment in T6-IM alloy at 250 0C. 188
Fig. 6.35 Crack growth transients (a) and crack closure transients (b) for the PM, 10% and 20% composites in the LT orientations under T4 treatment at 25 0C at OLR=1.5. Crack length at overload position was taken as zero. 189
Fig. 6.36 Crack growth transients (a) and crack closure transients (b) for the PM, 10% and 20% composites in the LT orientations under T4 treatment at 25 0C at OLR=1.75. Crack length at overload position was taken as zero 190
Fig. 6.37 Crack growth transients (a) and crack closure transients (b) for the PM, 10% and 20% composites in the LT orientations under T6 treatment at 25 0C at OLR=1.5. Crack length at overload position was taken as zero 191
Fig. 6.38 Crack growth transients (a) and crack closure transients (b) for the 10%-SiC MMC under the T4 and T6 treatments in the LT orientation at OLR=1.5 and 1.75. Crack length at overload position was taken as zero. 192
Fig. 6.39 Crack growth transients (a) and crack closure transients (b) for the 20%-SiC MMC under the T4 and T6 treatments at OLR=1.5 and 1.75. Crack length at overload position was taken as zero. 193
Fig. 6.40 Sequential overload central fatigue fracture surfaces of the T4-10%-SiC MMC at OLR=1.75. DK=11 MPa√m, R=0.1 (a) obscure piece-wise crack front and stretch zone, (b) micro-crack before the OL, (c) particles on the stretch zone, (d) decelerated zone, (e) larger decelerated zone, (f) micro-crack and particle resisted crack growth, (g) particles on stretch zone and micro-crack and accelerated zone, (h) large view on accelerated zone. 194
Fig. 6.41 Sequential overload edge fatigue fracture surfaces of the T4-10%-SiC MMC at OLR=1.75. DK=11 MPa√m, R=0.1 (a) accelerated and decelerated zone on the concave and convex shape, (b) large view concave on the OL, (c) before the OL, (d) accelerated zone, (e) accelerated zone, (f) decelerated zone, (g) larger decelerated zone. 195
Fig. 6.42 Schematic of the P-d" signal at OLR=1.75 overload fatigue experiment of (a) T4-10%-SiC MMC and (b) T6-10%-MMC. 196
Fig. 6.43 Fractography of the fatigue fracture and fast fracture on the edge (plane stress) and center (plane strain) of the T4-10%-SiC MMC specimen. 197
Fig. 6.44 Sequential overload edge fatigue fracture surfaces of the T6-10%-SiC MMC at OLR=1.75. DK=11 MPa√m, R=0.1 (a) decelerated zone, (b) micro-crack before the OL, (c) fracture surface just before the OL, (d) fracture surface just after OL. 197
Fig. 6.45 Comparison fractured surfaces of the LT and TL type specimens in 10%-SiC MMC. 198
Fig. 6.46 Matching fractured surfaces of the 6061 Al composite reinforced with 10%-SiC. (a) fractured particles and PPB on stretch band, (b) debonded particles and PPB on stretch band, (c) PPB after the stretch band, (d) particles resisted crack growth in the retarded band. 199
Fig. 6.47 Sequential overload central fatigue fracture surfaces of the T4-20%-SiC MMC at OLR=1.75. DK=12 MPa√m, R=0.1 (a) just before the OL, (b) stretch zone and micro-crack after the OL, (c) just after the stretch zone, (d) decelerated zone, (e) fracture surface between fatigue and stretch, (f) fracture surface between stretch and fatigue, (g) edge surface just before OL, (h) edge surface just after OL. 200
Fig. 6.48 Schematic of the P-d" signal at overload fatigue experiment of (a) T4-20%-SiC MMC, OLR=1.75 and (b) T6-20%-MMC, OLR=1.5. 201
Fig. 6.49 Schematic diagram of the fatigue crack profile after a single overloading; including constant fatigue crack growth, stretch band and retarded band. 202
Fig. 6.50 Morphology of the 6061 Al powder and SiC particulates and the extruded plastic flow between SiC particulates. 202
Fig. 6.51 Schematic diagram of the tensile loading fractured mechanisms and processes in particulate reinforced MMC . 203


表格
Table 2.1 : Chemical compositions and physical characteristics of the 6061 Al alloy powder, IM and SiC reinforcements. 38
Table 2.2 : Processing schedules of the powder metallurgy Al alloy and its composites. 38
Table 2.3 : The heat capacity (H), initiation (Ti) and peak (Tp) reaction temperature of the 6061 Al alloy and 10% SiC/6061 composite at 50C/min heating rate at extrusion ratio of 20:1 and 36:1. 39
Table 2.4 : Hardness of PM 6061 Al and MMC in various processing treatment. (HRB, 100 kg ball load ) 39
Table 4.1 : Yield strength and strain-to-fracture for the PM and IM alloys tested under different conditions. 87
Table 4.2 : Yield strength and strain-to-fracture for the PM, 10% and 20% SiC reinforced 6061 Al alloy composites tested under different conditions. 87
Table 6.1 : Overload retardation behavior for IM 6061 alloys with different orientation for both T4 and T6 aging condition at room temperature. 204
Table 6.2 : Overload retardation behavior for PM 6061 alloys with different orientation for both T4 and T6 aging condition at room temperature. 205
Table 6.3 : Overload plastic zone size for specimens in LT orientation for both T4 and T6 aging condition at room temperature. 206
Table 6.4 : Overload retardation behavior for IM 6061 alloys with different temperature under T6 aging condition. 207
Table 6.5 : Overload retardation behavior for 10%-SiC MMC with different orientation for both T4 and T6 aging condition at room temperature. 208
Table 6.6 : Overload retardation behavior for 20%-SiC MMC with different orientation for both T4 and T6 aging condition at room temperature. 209




參考文獻
Agarwal, H., Gokhale, A.M., Graham, S. and Horstemeyer, M.F. (2003), “Void growth in 6061-aluminum alloy under triaxial stress state,” Materials Science and Engineering, A341, pp. 35-42.
Allison J. E. and Cole, G. S. (1993), “Metal-matrix composites in the automotive industry: opportunities and challenges,” JOM, January, pp. 19-24.
Andersen, S.J., Zandbergen, H.W., Jansen, J., Traeholt, C., Tundal, U. and Reiso, O. (1998), “The crystal structure of the ���c phase in Al-Mg-Si alloys,” Acta Mater., Vol. 46, No. 9, pp. 3283-3298.
Appendino, P., Badini, C., Marino, F. and Tomasi, A. (1991), “6061 aluminum alloy-SiC particulate composite. A comparison between aging behavior in T4 and T6 treatments,” Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A135, No. 1-2, pp. 275-279.
Ashby, M. F. (1987), “Technology of the 1990s: Advanced Materials and Predictive Design,” Philosophical Transactions of the Royal Society of London, Vol. A322, pp. 393-407.
Bathias, C. and Vancon, M. (1978), “Mechanism of Overload Effect on Fatigue Crack Propagation of Two Aluminum Alloys,” Engineering Fracture Mechanics, 10(2), pp. 409-424.
Baxter, W.J. and Mckinney, T.R. (1988), “Growth of slip bands during fatigue of 6061-T6 aluminum,” Metallurgical Transactions A, Vol. 19, pp. 83-91.
Ber, L.B. (2000), “Accelerated artificial aging regimes of commercial aluminum alloys. II: Al-Cu, Al-Zn-Mg-(Cu), Al-Mg-Si-(Cu) alloys,” Materials Science and Engineering, A280, pp. 91-96.
Bernard, P. J., Lindley, T. C. and Richard, C. E. (1976), “Mechanisms of overload retardation during fatigue crack propagation,” Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595, American Society for Testing and Materials, pp. 78-97.
Biermann, H., Kemnitzer, M. and Hartmann, O. (2001), “On the temperature dependence of the fatigue and damage behavior of a particulate-reinforced metal-matrix composite,” Materialss Science and Engineering, Vol. A319-321, pp. 671-674.
Biermann, H., Kemnitzer, M. and Hartmann, O. (2002a), “Influence of reinforcement morphology and matrix strength of metal-matrix composites on the cyclic deformation and fatigue behavior,” International Journal of Fatigue, Vol. 24, pp. 215-221.
Biermann, H., Ding, H. Z., Kemnitzer, M. and Hartmann, O. (2002b), “Modelling low-cycle fatigue life of particulate-reinforced metal-matrix composites,” Materials Science and Engineering, Vol. A333, pp. 295-305.
Billman, F. R., Kuli, J. C., Hildeman, G. J., Petit, J. I. and Walker, J. A. (1982), Proceedings of the Third Conference of Rapid Solidification, National Bureau of Standards, Gaithersburg, MD, December 6-8, pp. 532-546.
Blankenship, Jr C. P. and Kaisand, L. R. (1996), “Elevated temperature fatigue crack propagation behavior of an Al-Li-Cu-Mg-Ag-Zr alloy,” Scripta Materialia, Vol. 34, No. 9, pp. 1455-1460.
Borrego, L. P., Ferreira, J. M. and Costa, J. M. (2001), “Fatigue crack growth and crack closure in an AlMgSi alloy,” Fatigue Fract. Engng. Mater. Struct., Vol. 24, pp. 255-265.
Botstein, O., Arone, R. and Shpigler, B. (1990), “Fatigue crack growth mechanisms in Al-SiC particulate metal matrix composites,” Materials Science and Engineering, Vol. A128, pp. 15-22.
Bray, G. H. and Starke, E. A. (1992), “The effect of elevated temperature exposure on fatigue crack growth retardation,” Scripta Metallurgica et Materialia, Vol. 27, pp. 593-598.
Bray, G. H. and Reynolds, A. P. and Starke, E. A. (1992), “Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys,” Metallurgical Transactions A, Vol. 23, pp. 3055-3066.
Brown, R. D. (1978), “Effects of tensile overloads on crack closure and crack propagation rates in 7050 aluminum,” Engineering Fracture Mechanics, Vol. 10, pp. 867-878.
Buck, O., Frandsen, J. D. and Marcus, H. L. (1976), “Spike overload and humidity effects on fatigue crack delay in Al 7075-T651,” Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595, American Society for Testing and Materials, pp. 101-112.
Carlson, R. L., Kardomateas, G. A. and Bates, P. R. (1991), “The effect of overloads in fatigue crack growth,” International Journal of Fatigue, Vol. 13, No. 6, pp. 453-460.
Carter, R.D., Lee, E.W., Starke E.A. Jr. and Beevers, C.J. (1984), “The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy,” Metallurgical Transactions, 15A, pp. 555-563.
Chawla, K. K., Liaw, P. K. and Fishman, S. G. (1996), “High-performance composites: commonalty of phenomena,” JOM, Vol. 2, pp. 43-44.
Chawla, N. and Habel, U. (2000), “The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites,” Metallurgical and Materials Transaction A, Vol. 31A, pp. 531-540.
Christophe G. E., Isaac, M. J. A. and Clark, J. P. (1996), “MMCs for automotive engine applications,” JOM, Vol. 2, pp. 49-51.
Corbin, S. F. and Wilkinson, D. S. (1994), “Influence of matrix strength and damage acculation on the mechanical response of a particulate metal matrix composite,” Acta Metall. Mater., Vol. 42, No. 4, pp. 1329-1335.
Corbin, S. F. and Wilkinson, D. S. (1996), “The tensile properties of a particulate reinforced Al alloy in the temperature range -196-300 0C,” Canadian Metallurgical Quarterly, Vol. 35, No. 2, pp. 189-198.
Crawford, B. R. and Griffiths, J. R. (1999), “The role of reinforcement particles during fatigue cracking of a micral-20-reinforced 6061 alloy,” Fatigue Fract. Engng. Mater. Struct., Vol. 22, pp. 811-819.
Darken, L. S. and Gurry, R. W. (1953), Physical Chemistry of Metals, McGraw-Hill Publications.
Davidson, D. L. (1981), “Plasticity Induced Fatigue Crack Closure,” ASTM STP 982, American Society for Testing and Materials. Philadelphia, pp. 44-61.
Davidson, D. L. (1991), “The effect of particulate SiC on fatigue crack growth in a cast-extrudeed aluminum alloy composite,” Metallurgical Transactions, Vol. 22A, pp. 97-112.
Doel, T. J. A. and Bowen, P. (1996), “Tensile properties of particulate-reinforced metal matrix composites,” Composites, Part A, Vol. 27, pp. 655-665.
Doong, S. H., Lee, T. C., Robertson, I. M. and Birnbaum, H. K. (1989), Scripta Metall., 23, pp. 1413.
Dugdale, D. S. (1960), “Yielding of Steel Sheets Containing Slits,” Journal of Mechanics and Physics Solids, 8, pp.100-108.
Dutta, I. and Allen, S. M. (1991), “A calorimetric study of precipitation in commercial aluminum alloy 6061,” Journal of Materials Science Letters, Vol. 10, pp. 323-326.
Elber, W. (1970), “Fatigue Crack Closure under Cyclic Tension,” Engineering Fracture Mechanics, 2, pp. 37-45.
Elber, W. (1971), “The significance of fatigue crack growth,” ASTM STP 486, American Society for Testing and Material, Philadelphia, pp. 230-241.
Endo, K., Okada, T. and Hariya, T. (1972), “Fatigue Crack Propagation in Bearing Metals Lining of Steel Plates in Lubricating Oil,” Bulletin of the JSME, Japanese Society of Mechanical Engineering, 15, pp. 439-445.
Engler, O. and Hirsch, J. (2002), “Texture control by thermomechanical processing of AA 6xxx Al-Mg-Si sheet alloys for automotive applications- a review,” Materials Science and Engineering, Vol. A336, pp. 249-262.
Evangelista, E., Forcellese, A., Gabrielli, F. and Mengucci, P. (1990), “Hot formability of AA 6061 PM aluminum alloy,” Journal of Materials Processing Technology, 24, pp. 323-332.
Frandesn, J. D., Inman, R. V. and Buck, O. (1975), “A comparison of acoustic and strain gage techniques for crack closure.” International Journal of Fracture, Vol. 11, pp.345-348.
Gary Bray H. (1991), “Fatigue crack propagation in dispersion-strengthened P/M aluminum alloys at room and elevated temperatures,” P/M in aerospace and defense technologies, pp. 381-392.
Gray, G. T., Williams, J. C. and Thompson, A. W. (1983), “Roughness-induced crack closure: an explanation for microstructurally sensitive fatigue crack growth,” Metallurgical Transactions A, Vol. 14A, pp. 421-433.
Griffith, A. A. (1921), “The Phenomena of Rupture and Flow in Solid,” Philosophical Transaction of Royal Society of London, Vol. A221, pp. 163-197.
Halliday, M. D. and Beevers, C. J. (1979), “Non-Closure of Cracks and Fatigue Crack Growth in ��-heat treated Ti-6Al-4V,” Int. J. Fract., 15(1), pp. R27-R30.
Halpin, J. C. and Tsai, S. W., Air Force Materials Lab., OH, AFML-TR-67-423.
Han, N. L., Wang, Z. G., Wang, W. L., Zhang, G. D. and Shi, C. X. (1999), “Low-cycle fatigue behavior of a particulate SiC/2024 composite at ambient and elevated temperature,” Composites Science and Technology, Vol. 59, pp. 147-155.
Healy, J. C. and Beevers, C. J. (1993), “Fatigue crack propagation in a particulate-reinforced metal-matrix composite at room and elevated temperature,” Processings of the International Conference on Advanced Composite Materials, pp. 1161-1168.
Irwin, G. R. (1957), “Analysis of Stresses and Strains near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Vol. 24, pp. 361-364.
Irwin, G. R. (1960), “Plastic Zone near a Crack and Fracture Toughness,” Proc. 7th Sagamore Research Conference, pp. IV-13.
Ishii, H., Tohgo, K. and Araki, H. (1991), “Fatigue crack propagation of SiC whisker reinforced 6061 aluminum alloy composite,” Engineering Fracture Mechanics, Vol. 40, No. 4/5, pp. 821-827.
James, M. A. and Newman Jr, J. C. (2003), “The effect of crack tunneling on crack growth: experiments and CTOA analyses,” Engineering Fracture Mechanics, Vol. 70, pp. 457-468.
Jonas, J. J., Sellars, C.M. and Tegart, W.J. (1969), “Strength and structure under hot-working condictions”,Int. Metall. Rev., 14, pp. 1
Kapoor, R. and Vecchio, K. S. (1995), “Deformation behavior and failure mechanisms in particulate reinforced 6061 Al metal-matrix composites,” Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A202, No. 1-2, pp. 63-75.
Kim, Y. W., Griffith, W. M. and Fores, F. F. (1983), ASM Metals/Materials Technology Series NO. 8305-048, ASM Metals Congress, Philadelphia, PA, pp. 3-6.
Kim, Y. W., Griffith, W. M. and Fores, F. F. (1985), “Surface Oxides in P/M Aluminum Alloys,” Journal of Metals, pp. 27-33.
Kim, J. H. and Lee, S. B. (2001), “Behavior of plasticity-induced crack closure and roughness-induced crack closure in aluminum alloy,” International Journal of Fatigue, Vol. 23, pp. S247-S251.
Knott, J. F. and Pickard, A. C. (1977), “Effect of Overload on Fatigue Crack Propagation: Aluminum Alloys,” Metal Science, Aug/Sept., pp. 399-404.
Knowles, D. M. and King, J. E. (1992), “Role of reinforcement/matrix interfacial strength in fatigue crack propagation in particulate SiC reinforced aluminum alloy 8090,” Materials Science and Technology, Vol. 8, pp. 500-509.
Krishnadas Nair, C. G., Krishnadev, M. R. and Datta, D. (1989), “Interfaces in Metal-Ceramics Composites,” The Minerals, Metals & Materials Society, pp. 291.
Kumai, S., King, J. E. and Knott, J. F. (1990), “Short and long fatigue crack growth in a SiC reinforced aluminum alloy,” Fatigue Fract. Engng. Mater. Struct., Vol. 13, No. 5, pp. 511-524.
Kumai, S. and Higo, Y. (1996), “Effect of delamination on fatigue crack growth retardation after single tensile overloads in 8090 Al-Li alloys,” Materials Science and Engineering A221, pp. 154-162.
Kumar, R. (1991), “Effect of variable single cycle peak overload on fatigue life,” Int. J. Pres. Ves. & Piping, Vol. 48, pp. 293-303.
Kumar, R. (1992), “Investigation of yield strength and single cycle overload on crack closure,” Int. J. Pres. Ves. & Piping, Vol. 51, pp. 329-348.
Kumar, R., Kumar, A. and Singh, K. (1996), “Effect of rest time after application of single overload cycle on fatigue life,” Engineering Fracture Mechanics, Vol. 54, No. 1, pp. 147-153.
Lal, D.N. (1992), “A model for the combined effects of stress ratio and grain size on the LEFM fatigue threshold condition,” Fatig. Fract. Engng. Mater. Struct., Vol. 15, No. 8, pp. 775-792.
Lang, M. and Marci, G. (1999), “The influence of single and multiple overloads on fatigue crack propagation,” Fatigue Fract. Engng. Mater. Struct., Vol. 22, pp. 257-271.
Lang, M. (2000), “A model for fatigue crack growth, part I: phenomenology,” Fatigue Fract. Engng. Mater. Struct., Vol. 23, pp. 587-601.
Laurent, V., Chatain, D. and Eustathopoulos, N. (1987), J. Mater. Sci., 22, pp. 244.
Lee, C. S., Kim, Y. H., Lim, T. and Han, K. S. (1991), Scripta Metall., 25, pp. 613.
LeRoy, G., Embury, J.D., Edwards, G. and Ashby, M.F. (1981), Acta metallurgica et materialia, 29, pp. 1509-1522.
Levin, M. and Karlsson, B. (1991), “Influence of SiC particle distribution and prestraining on fatigue crack growth rates in aluminum AA6061-SiC composite material,” Materials Science and Technology, Vol. 7, pp. 596-607.
Ling, M. R. and Schijve, J. (1992), “The effect of intermediate heat treatments on overload induced retardations during fatigue crack growth in an Al-alloy,” Fatigue Fract. Engng. Mater. Struct., Vol. 15, No. 5, pp. 421-430.
Litvintev, A. I. and Arbuzova, L. A. (1967), Sov. P/M and Met. Cer., 1, pp. 1-10.
Liu, G., Zhang, G.J., Ding, X.D., Sun, J. and Chen, K.H. (2003), “Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates,” Materials Science and Engineering, A344, pp. 113-124.
Ll, K. and Yan, B. D. (1992), “Effects of SiC particles on fatigue crack propagation in SiC/Al composites,” Composites, Vol. 23, No. 1, pp. 54-58.
Llorca, J., Ruiz, J., Healy, J.C., Elices, M. and Beevers, C.J. (1994), “Fatigue crack propagation in salt water, air and high vacuum in a spray-formed particulate-reinforced metal matrix composite,” Materials Science and Engineering, A185, pp. 1-15.
Lloyd, D. J. (1991), “Aspects of fracture in particulate reinforced metal matrix composites,” Acta Metall. Mater., Vol. 39, No.1, pp. 59-71.
Lloyd, D. J. (1994), “Particle reinforced aluminum and magnesium matrix composites,” International Materials Reviews, Vol. 39, No. 1, pp. 1-23.
Mansson, T., Skantz, J. and Nilsson, F. (2002), “High temperature fatigue crack growth in two metals under constant and variable amplitude loading,” International Journal of Fatigue, Vol. 24, pp. 1159-1168.
Martin, A., Rodriguez, J. and Llorca, J. (1999), “Temperature effects on the wear behavior of particulate reinforced Al-based composites,” Wear, Vol. 225-229, pp. 615-620.
Masayuki Shimojo, Makoto Chujo, Yakichi Higo and Shigetomo Nunomura (1998), “Mechanism of the two stage plastic deformation following an overload in fatigue crack growth,” International Journal of Fatigue, Vol. 20, No. 5, pp. 365-371.
Matsuoka, S. and Tanaka, K. (1978), “Delayed retardation phenomenon of fatigue crack growth resulting from a single application of overload,” Engineering Fracture Mechanics, Vol. 10, pp. 515-525.
Matsuoka, S. and Tanaka, K. (1980), “The influence of sheet thickness on delayed retardation phenomena in fatigue crack growth in HT80 steel and A5083 aluminum alloy,” Engineering Fracture Mechanics, Vol. 13, pp. 293-306.
Mcevily, A. J. and Yang, Z. (1990), “The nature of the two opening levels following an overload in fatigue crack growth,” Metallurgical Transactions A, Vol. 21, pp. 2717-2727.
McKimpson, M. G., and Scott, T. E. (1989), “Processing and properties of metal matrix composites containing discontinuous reinforcement,” Materials Science and Engineering, Vol. A107, pp.93-106.
McKimpson, M. G., Pohlenz, E. L. and Thompson, R. (1993), “Evaluating the mechanical properties of commercial DRA,” January, pp. 26-30.
McQueen, H.J. and Celliers, O.C. (1997), “Application of hot workability studies to extrusion processing. Part III: Physical and mechanical metallurgy of Al-Mg-Si and Al-Zn-Mg alloys,” Canadian Metallurgical Quarterly, Vol. 36, No. 2, pp. 73-86.
McQueen, H.J. (1998), “Substructural influence in the hot rolling of Al alloys,” JOM, June, pp. 28-33.
Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., Smet, P. De, Haszler, A. and Vieregge, A. (2000), “Recent development in aluminum alloys for the automotive industry,” Materials Science and Engineering A280, pp. 37-49.
Nair, S. V., Tien, J. K. and Bates, R. C. (1985), “SiC-reinforced aluminum metal matrix composites,” International Materials Reviews, Vol. 30, No. 6, pp. 275-290.
Nan, C. W. and Clarke, D. R. (1996), “The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites,” Acta Mater. Vol. 44, No. 9, pp. 3801-3811.
Nieh, T. G., Lesuer, D. R. and Syn, C. K. (1995), “Tensile and fatigue properties of a 25 vol% SiC particulate reinforced 6090 Al composite at 300 0C,” Scripta Metallurgica et Materialia, Vol. 32, No. 5, pp. 707-712.
Nutt, S. R. and Duva, J. M. (1986), Scripta Metall., 20, pp. 1055.
Oh, S. Y., Cornie, J. A. and Russell, K. C. (1989), Metall. Trans. 20A, pp. 527.
Papakyriacou, M. and Mayer, H. R. (1995), “Near threshold fatigue crack growth in Al2O3 particle reinforced 6061 aluminum alloy,” Fatigue Fract. Engng. Mater. Struct., Vol. 18, No. 4, pp. 477-487.
Papazian, J. M. (1988), “Effect of SiC whiskers and particles on precipitation in aluminum matrix composites,” Metallurgical Transactions A, Vol. 19A, pp. 2945-2953.
Paris, P. C. and Erdogan, F. (1960), “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, 85, pp. 528-534.
Paris, P. C., Gomez, M. P. and Anderson, W. E. (1961), “A Rational Analysis Theory of Fatigue,” The Trend in Engineering, U. of Washington, 13, pp. 9-14.
Paris, P. C. et al. (1972), “Extensive Study of Low Fatigue Crack Growth Rates in A533 and A508 Steels,” ASTM STP 513, American Society for Testing and Materials, Philadelphia, pp. 141-176.
Paris, P. C., Tada, Hiroshi and Donald J. Keith (1999), “Service load fatigue damage – a historical perspective,” International Journal of Fatigue, Vol. 21, pp. S35-S46.
Pete Scala E. (1996), “A brief history of composites in the U.S.-the dream and the success,” JOM, Vol. 2, pp. 45-48.
Pineau, A. G. and Pelloux, R. M. N. (1974), “Influence of Strain Induced Martensitic Transformations on Fatigue Crack Growth Rates in Stainless Steels,” Metallurgical Transactions, 5A, pp. 1103-1112.
Poza, P. and Llorca, J. (1996), “Fracture toughness and fracture mechanisms of Al-Al2O3 composites at cryogenic and elevated temperatures,” Materials Science and Engineering A206, pp. 183-193.
Raju, K. N., Ningiah, V. and Rao, B. V. S. (1972), “Effect of exposure to elevated temperatures on delay in crack growth due to a high stress cycle,” Int. J. Fract. Mech., Vol. 8, pp. 99-102.
Ramaswamy, Dorai-Nirmal V. (2001), “Role of crack tip plasticity in fatigue crack growth,” Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, Vol. 81, No. 5, pp. 1283-1303.
Reynolds, A. P. (1992), “Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009,” Fatigue Fract. Engng. Mater. Struct., Vol. 15, No. 6, pp. 551-562.
Reynolds, A. P. (1993), “Elevated temperature fatigue of P/M aluminum alloy 8009,” Scripta Metallurgica et Materialia, Vol. 28, pp. 201-206.
Rhee, K. Y. (1994), “�寐ol level effects on fatigue crack propagation,” Journal of Materials Science, Vol. 29, pp. 6501-6504.
Ribes, H., Da Silver, R., Suery, M. and Bretheau, T. (1990), Mater. Sci. Tech., 6 pp. 621.
Rice, J. R. (1967), ASTM STP-415, American Society for Testing and Materials, Philadelphia, pp. 247.
Rjendra, U. V. and Chawla, K. K. (1994), “Thermal expansion of metal-matrix composites”, Composites Science and Technology, 50, pp. 13-22.
Robin, C., Louah, M. and Pluvinage, G. (1983), “Influence of and Overload on the Fatigue Crack Growth in Steels,” Fatigue & Fracture of Engng. Mat. & Structures, 6(1), pp. 1-13.
Ryder, D. A., Martin, M. and Abdullah, M. (1977), “Some Factors Influencing Stage I Fatigue Crack Growth,” J. of Metal Science, 11, pp. 340-344.
Sadananda, K., Vasudevan, A. K., Holtz, R. L. and Lee, E. U. (1999), “Analysis of overload effects and related phenomena,” International Journal of Fatigue, Vol. 21, pp. S233-S246.
Sadananda, K., Vasudevan, A. K. and Holtz, R. L. (2001), “Extension of the unified approach to fatigue crack growth to environmental interactions,” International Journal of Fatigue, Vol. 23, pp. S277-S286.
Schijve, J. (1979), “Four lectures on fatigue crack growth,” Engineering Fracture Mechanics, Vol. 11, pp. 167-221.
Schijve, J. (1988), “Fatigue crack closure: observations and technical significance,” Mechanics of Fatigue Crack Closure, ASTM STP 982, American Society for Testing and Materials, Philadelphia, pp. 5-34.
Schijve, J. (1999), “The significance of fractography for investigations of fatigue crack growth under variable-amplitude loading,” Fatigue Fract. Engng. Mater. Struct., Vol. 22, pp. 87-99.
Seidman, D. S., Marquis, E. A. and Dunand, D. C. (2002), “Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloy,” Acta Mater., Vol. 50, pp. 4021-4035.
Shang, J. K. and Ritchie, R. O. (1989), “On the particle-size dependence of fatigue-crack propagation thresholds in SiC-particulate-reinforced aluminum alloy composites: role of crack closure and crack trapping,” Acta Metal., Vol. 37, No. 8, pp. 2267-2278.
Shin, C. S. and Fleck, N. A. (1987), “Overload Retardation in a Structural Steel,” Fatigue & Fracture of Engng. Mat. & Structures, 9(5), pp.379-393.
Shin, C. S. and Hsu, S. H. (1993), “On the Mechanisms and Behaviors of Overload Retardation in AISI 304 Stainless Steel,” Int. J. Fatigue, 15(3), pp. 181-192.
Shin, C. S., Huang, W. H. and Chen, H. Y. (1993a), “An improved DC potential drop system for crack length measurement.” Journal of the Chinese institute of engineers, 16(1), pp.29-40.
Shuter, D. M. and Geary, W. (1995), “The influence of specimen thickness on fatigue crack growth retardation following an overload,” International Journal of Fatigue, Vol. 17, No. 2, pp. 111-119.
Song, P. S., Sheu, B. C. and Chang, L. (2001), “A modified wheeler model to improve predictions of crack growth following a single overload,” JSME International Journal, Series A, Vol. 44, No. 1, pp. 117-122.
Srivatsan, T. S., Sriram, S. and Daniels, C. (1997a), “Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061,” Engineering Fracture Mechanics, Vol. 56, No. 4, pp. 531-550.
Srivatsan, T. S., Anand, S. and Narendra, N. (1997b), “Mechanisms governing deformation and damage during elevated-temperature fatigue of an aluminum-magnesium-silicon alloy,” Journal of Materials Engineering and Performance, Vol. 6, pp. 187-198.
Srivatsan, T. S. (1999), “Mechanisms governing cyclic deformation and failure during elevated temperature fatigue of aluminum alloy 7055,” International Journal of Fatigue, Vol. 21, pp. 557-569.
Srivatsan, T. S. and Anand, S. (2000), “The high-cycle fatigue and fracture behavior of aluminum alloy 7055,” Materials Science and Engineering, Vol. A281, pp. 292-304.
Srivatsan, T. S., Al-Hajri M., Petraroli, M., Hotton, B. and Lam, P. C. (2002), “Influence of silicon carbide particulate reinforcement on quasi static and cyclic fatigue fracture behavior of 6061 aluminum alloy composites,” Materials Science Engineering, Vol. A235, pp. 202-214.
Srivatsan, T. S. and Al-Hajri, M. (2002a), “The fatigue and final fracture behavior of SiC particle reinforced 7034 aluminum matrix composites,” Composites: Part B, Vol. 33, pp. 391-404.
Srivatsan, T. S. (2002b), “An investation of the cyclic fatigue and fracture behavior of aluminum alloy 7055,” Materials and Design, Vol. 23, pp. 141-151.
Srivatsan, T.S., Kolar, D. and Magnusen, P. (2002c), “The cyclic fatigue and final fracture behavior of aluminum alloy 2524,” Materials and Design, Vol. 23, pp. 129-139.
Sugimura, Y. and Suresh, S. (1992), “Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles,” Metallurgical Transactions A, Vol. 23A, pp. 2231-2242.
Suresh, S., Zamiski, G. F. and Ritchie, R. O. (1981), “Oxide Induce Crack Closure: an Explanation for Near Threshold Corrosion Fatigue Crack Growth Behavior,” Metall. Trans., 12A, pp. 1435-1443.
Suresh, S. (1982), “Crack Growth Retardation Due to Micro-roughness: A Mechanism for Overload Effects in Fatigue,” Scripta Metall., 16, pp. 995-999.
Suresh, S. (1983), “Micro-mechanisms of Fatigue Crack Growth Retardation Following Overloads,” Engngs. Frac. Mech., 18(3), pp. 577-593.
Suresh, S. and Ritchie, R. O. (1884), “Near Threshold Fatigue Crack Propagation: a Perspective on the Role of Crack Closure,” Warrendale: The Metallurgical Society of the American Institute of Mineral and Petroleum Engineers, pp. 227-261.
Sushovan Roychowdhury, Yamuna Das Arun Roy and Robert H. Dodds Jr. (2002), “Ductile tearing in thin aluminum panels: experiments and analyses using large-displacement, 3-D surface cohesive elements,” Engineering Fracture Mechanics, Vol. 69, pp. 983-1002.
Tanaka, T., Nakayama H. and Kobayashi, Y. (1996), “Fatigue crack growth mechanism of MMC at room and higher temperatures,” Computer aided assessment and control of localized damage – proceedings of the international conference, pp. 247-254.
Vasudevan, A. K., Sadananda, K. and Rajan, K. (1997), “Role of microstructures on the growth of long fatigue cracks,” International Journal of Fatigue, Vol. 19, Supp. No. 1, pp. S151-S159.
Vasudevan, A. K. and Sadananda, K. (1997a), “Role of grain size on long fatigue cracks,” Proceedings of the TMS Fall Meeting, High cycle fatigue of structural materials, pp. 167-179.
Vecchio, R. S., Hertzberg, R. W. and Jaccard, R. (1984), “On the overload induced fatigue crack propagation behavior in aluminum and steel alloys,” Fatigue Engng. Mater. Struct., Vol. 7, No. 3, pp. 181-194.
Venkateswara Rao, K. T. and Ritchie R. O. (1988), “Mechanisms for the retardation of fatigue cracks following single tensile overloads: behavior in aluminum-lithium alloys,” Acta Metall. Vol. 36, No. 10, pp. 2849-2862.
Viala, J. C., Fortier, P., Bernard, C. and Bouix, J. (1985), in Proc. 1st Eur. Conf. on “Composite Materials,” ECCM-I, ed. Bunsel, A. R. et al., Bordeaux, France, EACM, pp. 583.
Wells, C. H. (1978), “High-temperature fatigue,” Fatigue and microstructure,” Papers presented at the 1978 ASM Materials Science Seminar, pp. 307-333.
Wu, S. B. and Arsenault, R. J. (1991), Mater. Sci. Eng., 138, pp. 227.
Xia, X., Mcqueen, H. J. and Zhu, H. (2002), “Fracture behavior of particle reinforced metal matrix composites,” Applied Composite Materials, Vol. 9, pp. 17-31.8
Yang, J., Cady, C., Hu, M. S., Zok, F., Mehrabiab, R. and Evans, A. G. (1990), “Effects of damage on the flow strength and ductility of a ductile Al alloy reinforced with SiC particulates,” Acta Metall. Mater., Vol. 38, No. 12, pp. 2613-2619.
Yankee, S. J., Janowski, G. M. and Pletaka, B. J. (1990), Mater. & Manufac. Proc., 5(2), pp. 147.
Zhong, L. J., Wu, J. B., and Qi, P. X. (1989), “Interfaces in Metal-Ceramics Composites,” The Minerals, Metals & Materials Society, pp. 213.
李輝隆 (1993),”鋁基複合材料製程及性質之研究,” 博士論文,國立台灣大學材料科學與工程學研究所。
粉末冶金技術手冊,中華民國粉末冶金協會,1994, 7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top