(3.236.214.19) 您好!臺灣時間:2021/05/10 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張景翔
研究生(外文):Ching-Hsiang Chang
論文名稱:掃描式探針顯微鏡於奈米微影之Mu合成控制
論文名稱(外文):Mu synthesis Control of Scanning Probe Microscope for Nanolithography
指導教授:顏家鈺顏家鈺引用關係
指導教授(外文):Jia-Yush Yen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:109
中文關鍵詞:定力控制掃描探針微影術Mu合成控制奈米微影原子力顯微鏡
外文關鍵詞:SPM lithographyNanolithographyMu synthesisAFMforce control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文藉由刮掉標本表面提出2維的掃描式探針顯微鏡微影。以前的研究已經證明伺服控制器對微影有重要影響,精心設計的控制器可以完成更均勻的微影記號。本篇研究指出當連續微影若干直線時能夠觀察釵h未預料到的影響,試片表面上的材料受到探針的推擠而上昇成犁狀形狀的邊緣,此時當我們試著擴大這個溝渠的寬度時,犁狀記號會變得參差不齊。本篇論文也顯示經由謹慎地操作微影過程,我們的確可能獲得較平緩的微影圖形。此外,我們也引入Mu合成控制器,在設計過程我們可以看到其整體的結果表現,實驗結果符合這些設計規格。
This thesis addresses the 2-dimensional scanning probe microscope (SPM) lithography by scratching the sampling surface. The previous research has shown that servo controller has significant effect on the lithography. Carefully designed controller achieves more uniform scratch marks. This research has demonstrated that many unexpected effect can be observed when marking multiple lines. The material on the sample surface piles up on the sides of the plow mark. The plow mark would then become uneven when one tries to widen the ditch. The study also shows that it is possible to achieve more even marking geometry by carefully operate the cutting procedure. A Mu-synthesis controller is also presented to show how the outcome performance can be incorporated at the design stage. The experimental results confirm the design specifications.
目錄
摘要………………………………………………………………………I
Abstract……………………………………………………………… II
目錄……………………………………………………………………III
圖目錄………………………………………………………………… VI
表目錄……………………………………………………………… XIII

第一章 緒論……………………………………………………………1
1.1 前言……………………………………………………………… 1
1.2 研究動機與目的………………………………………………… 1
1.3 文獻回顧………………………………………………………… 3
1.4 論文架構………………………………………………………… 9
第二章 原子力顯微鏡(AFM)系統……………………………………11
2.1 原子力顯微鏡介紹………………………………………………11
2.2 原子力顯微鏡硬體架構…………………………………………12
2.2.1 AFM作用原理………………………………………………… 12
2.2.2 壓電圓管………………………………………………………14
2.2.3 探針懸臂樑……………………………………………………16
2.2.4 光位移感測器(Position sensitive photo detector, PSPD)…17
2.2.5 回授迴路操作系統……………………………………………19
2.2.6 定力控制………………………………………………………19
2.2.7 定高控制………………………………………………………22
2.3 實驗硬體與軟體設備……………………………………………22
第三章 控制器設計與模擬………………………………………… 27
3.1 系統識別…………………………………………………………28
3.2 PID控制器設計與模擬………………………………………… 30
3.3 Mu控制器設計與模擬……………………………………………31
3.3.1 不確定度的描述方法…………………………………………32
3.3.2 Mu控制器設計與模擬…………………………………………40
3.4 實驗方法…………………………………………………………48
第四章 實驗結果…………………………………………………… 52
4.1 利用PID控制器的微影結果…………………………………… 52
4.1.1 於同一條x軸掃描微影………………………………………52
4.1.2 於相同x軸來回掃描微影……………………………………55
4.2 利用Mu 控制器的微影結果…………………………………… 61
4.2.1 於同一條x軸掃描微影………………………………………61
4.2.2 於相同x軸來回掃描微影……………………………………64
4.3 相異作用力微影結果比較………………………………………68
4.3.1 PID控制器…………………………………………………… 68
4.3.2 Mu控制器………………………………………………………74
4.4 比較與討論兩種控制器…………………………………………81
4.5 比較兩種相異x向的掃描微影路徑…………………………… 81
4.5.1 微影路徑一,舊探針…………………………………………82
4.5.1.1 PID控制器於微影路徑一………………………………… 83
4.5.1.2 Mu控制器於微影路徑一……………………………………84
4.5.2 微影路徑二,舊探針………………………………………… 85
4.5.2.1 PID控制器於微影路徑二………………………………… 86
4.5.2.2 Mu控制器於微影路徑二……………………………………87
4.5.3 微影路徑一,新探針…………………………………………89
4.5.3.1 PID控制器於微影路徑一………………………………… 90
4.5.3.2 Mu控制器於微影路徑一……………………………………91
4.5.4 微影路徑二,新探針…………………………………………92
4.5.4.1 PID控制器於微影路徑二………………………………… 92
4.5.4.2 Mu控制器於微影路徑二……………………………………93
4.6 其他修正實驗結果………………………………………………96
第五章 結論與未來展望……………………………………………101
參考文獻………………………………………………………………104
[1] In Soh, H.T., Guarini, K.W., Quate, C.F., Scanning probe lithography, Kluwer Academic Publishers, Boston, Dordrecht, London, 2001.
[2] Pe’rez-Murano, F., G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza and F. Sanz, “Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy,” J. Appl. Phys. Vol.78, No.11, pp.6797-6801, 1995.
[3] Avouris, P., T. Hertel and R. Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication,” Appl. Phys. Lett. Vol.71, Issue 2, pp.285-287, 1997.
[4] Hu, S, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg and H. Kurt,
“Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography,” J. Vac. Sci. Tech., Vol.B, No.16, pp.2822, 1998.
[5] Notargiacomo, A., V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti and C. Nicolin, “Atomic force microscopy lithography as a nanodevice development technique,” Nanotechnology, Vol.10, pp.458, 1999.
[6] Versen, M., B. Klehn, U. Kunze, D. Reuter and A.D. Wieck, “Nanoscale devices fabricated by direct machining of GaAs with an atomic force microscope,” Ultramicroscopy, Vol.82, pp.159-163, 2000.
[7] Kunze, U and B. Klehn, “Nanolithography with an AFM by means of vector-scan controlled dynamic plowing,” J. Appl. Phys., Vol. 85, pp. 3897-3903, 1999.
[8] Fang, T-H., C-I Weng and J-G Chang, “Machining characterization of the nano-lithography process using atomic force microscopy,” Nanotechnology, Vol.11, pp.181-187, 2000.
[9] http://www.zurich.ibm.com/st/storage/millipede.html, 2002
[10] Jin X. and W. N. Unertl, “Submicrometer modification of polyemr surfaces
with a surface force microscope,” Appl. Phys. Lett., Vol. 61, No. 6, 10 August 1992.
[11] Dumas, P., M. Gu, C. Syrykh, A. Hallimaoui, F. Salvan, and J. K. Gimzewski, “Nanostructuring of porous silicon using scanning tunneling microscopy,” J. Vac. Sci. Technol., B 12 (3) , pp. 2067-2069, May/Jun.,1994.
[12] Boschung, E., M. Heuberger and G. Dietler, “Energy dissipation during nanoscale indentation of polymers with an atomic force microscope,” Appl. Phys. Lett., 64 (26), pp. 3566-3368, June, 1994.
[13] Shojiro Miyake, “1 nm deep mechanical processing of muscovite mica by atomic force microscopy,” Appl. Phys. Lett., 67 (20), pp. 2925-2927, Nov., 1995.
[14] Gobel, H. and P. von Blanckenhagen, “Atomic force microscope as a tool for metal surface modification,” J. Vac. Sci. Technol., B 13 (3), pp. 1247-1251, May/Jun, 1995.
[15] Bourgoin, J. P., R. V. Sudiwala, and S. Palacin, “High speed layer by layer patterning of phthalocyanine Langmuir-Blodgett films by the atomic force microscope,” J. Vac. Sci. Technol., B 14 (5), pp. 3381-3385, Sep/Oct, 1996.
[16] Sugihara, Hideki, Atsushi Takahara, and Tisato Kajiyama, “Mechanical nanofabrication of lignoceric acid monolayer with atomic force microscopy,” J. Vac. Sci. Technol., B 19 (2), pp. 593-595, Mar/Apr., 2001.
[17] Heyde, M., K. Rademann, B. Cappella, M. Geuss, H. Sturm, T. Spangenberg and H. Niehus, “Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope,” Rev. Sci. Instrm., 72 (1), pp. 136-141, Jan., 2001.
[18] Yamamoto, S., H. Yamada, and H. Tokumoto, “Nanometer Modification of Non-Conductive Materials Using Resist-Films by Atomic Force Microscopy,” Jpn. J. Appl. Phys. 1, 34, pp. 3396, 1995.
[19] Sohn, L. L. and R. L. Willett, “Fabrication of nanostructures using atomic-force-microscope-based lithography,” Appl. Phys. Lett., 67 (11), pp. 1552-1554, Sep., 1995.
[20] Bouchiat, V. and D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett., 69 (20), pp. 3098-3100, Nov., 1996.
[21] Magno, R. and B. R, Bennett, “Nanostructure patterns written in III-V semiconductors by an atomic force microscope,” Appl. Phys. Lett., 70 (14), pp.1855-185, April, 19977.
[22] Hu, S., S. Altmeyer, A. Hamidi, B. Spangenberg, and H. Kurz, “Novel approach to atomic force lithography,” J. Vac. Sci. Technol., B 16 (4), pp. 1983-1986, Jul/Aug, 1998.
[23] Wiesauer, K. and G. Springholz, “Fabrication of semiconductor nanostructures by nanoindentation of photoresist layers using atomic force microscopy,” J. Appl. Phys., 88 (12), pp. 7289-7297, Dec., 2000.
[24] Porter, Jr., Lon A., Alexander E. Ribbe, and Jillian M. Buriak, “Metallic Nanostructures via Static Plowing Lithography,” Nano Letters, 3 (8), pp. 1043-1047, 2003.
[25] Santinacci, L., T. Djenizian, and P. Schmuki, “Nanoscale patterning of Si(100) surfaces by scratching through the native oxide layer using atomic force microscope,” Appl. Phys. Lett., 79 (12), pp. 1882-1884, Sep., 2001.
[26] Leach, R. N., F. Stevens, C. Seiler, S. C. Langford, and J. T. Dickinson “Nanometer-Scale Solvent-Assisted Modification of Polymer Surfaces Using the Atomic Force Microscope,” Langmuir, 19, 10225-10232 , 2003.
[27] Bouzehouane, K., S. Fusil, M. Bibes, J. Carrey, T. Blon, M. Le Dû, P. Seneor, V. Cros, and L. Vila, “Nanolithography Based on Real-Time Electrically Controlled Indentation with an Atomic Force Microscope for Nanocontact Elaboration,” Nano Letters, 3 (11), pp. 1599-1602, 2003.
[28] Ruetschi, M., P. Grutter, J. Funfschilling, and H.-J. Guntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science, 265, pp. 512-514, July, 1994.
[29] Sundararajan, S and Bharat Bhushan, “Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy,” Wear, 225-229, pp.678-689, 1999.
[30] Hector, L.G. and S.R. Schmid, “Simulation of asperity plowing in an atomic force microscope part I: experimental and theoretical methods,” Wear, Vol.215, pp.247-256, 1998.
[31] Schmid, S.R and L.G. Hector, “Simulation of asperity plowing in an atomic force microscope part II: plowing of aluminum alloys,” Wear, Vol.215, pp.257-266, 1998.
[32] Maekawa, K. and A. Itoh, “Friction and tool wear in nano-scale machining-a molecular dynamics approach,” Wear, Vol.188, pp.115-122, 1995.
[33] Zhan, Liangchi and Hiroaki Tanaka, “Towards a deeper understanding of wear and friction on the atomic scale – a molecular dynamics analysis,” Wear, Vol.211, pp.44-53, 1997.
[34] Fang, Te-Hua and Cheng-I Weng, “Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale,” Nanotechnology, Vol.11, pp.148-153, 2000.
[35] Fang, Te-Hua, Cheng-I Weng and Jee-Gong Chang, “Molecular dynamics simulation of nano-lithography process using atomic force microscopy,” Surface Sceince, Vol.501, pp.138-147, 2002.
[36] M. Ashhab, M. V. Salapaka, M. Dahleh, and I. Mezic, “Control of Chaos in Atomic Force Microscopes,” Proceedings of the American Control Conference, Albuquerque, New Mexico June 1997
[37] F. M. Battiston, M. Bammerlin, C. Loppacher, R. Luthi, E. Meyer, and H.-J. Guntherodt, “Fuzzy controlled feedback applied to a combined scanning tunneling and force microscope,” Appl. Phys. Lett. 72 (1), 5 January, 1998.
[38] G. Schitter, P. Menold, H. F. Knapp, F. Allgower, and A. Stemmer, “High performance feedback for fast scanning atomic force microscopes,” Review of Scientific Instruments, Vol. 72, No. 8, Aug., 2001.
[39] El Rifai, O.M. and K. Youcef-Toumi, “Creep in piezoelectric scanners of atomic force microscopes,” Proceedings of the American Control Conference, Anchorage, AK, May 8-10, pp.3777-3782, 2002.
[40] Fan, Youngchung, Matthew G. Feemster, Darren M. Dawson, and Nader Jalili, “Nonlinear Control Techniques for the Atomic Force Microscope System,” Proceedings of IMECE2002, ASME Internal Mechanical Engineering Congress & Exposition, Nov. 17-22, 2002
[41] El Rifai, O.M. and K. Youcef-Toumi, “Dynamics of contact-mode atomic force microscopes,” Proceedings of the American Control Conference, Chiago, Illinois, June, pp.2118-2122, 2000.
[42] El Rifai, Osamah M., and Kamal Youcef-Toumi, “In-contact Dynamics of Atomic Force Microscopes,” Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 8-12 July, 2001.
[43] El Rifai, O.M. and K. Youcef-Toumi, “Dynamics of atomic force microscopes: experiments and simulation,” Proceedings of the 2002 IEEE International Conference on Control Applications, Sep. 18-20, Glasgow, Scotland, UK, pp.1126-1131, 2002.
[44] El Rifai, O.M. and K. Youcef-Toumi, “Design and control of atomic force microscopes,” Proceedings of the American Control Conference, Denver, Colorado, USA, June 4-6, pp. 3714-3719, 2003.
[45] Yoder M. N., “Microelectronics/Nanoelectronics and the 21th Century,” Proceedings of the Fourteenth Biennial, Richmond, USA, pp. 2 -7, 2001.
[46] Metin Sitti, “Survey of Nanomanipulation Systems,” Proceedings of the 2001 1st IEEE Conference, Maui, Hi, USA, pp. 75-80, 2001
[47] Li S. F. Y., H. T. Ng, P. C. Zhang, P. K. H. Ho, L. Zhou, G. W. Bao, and S. L. H. Chan, “Submicrometer lithography of a silicon substrate by machining of photoresist using atomic force microscopy followed by wet chamical etching,” Nanotechnology, Vol. 8, pp. 76-81, 1997
[48] Wilder K. and C. F. Quate, “Noncontact nanolithography using the atomic force microscope,” Appl. Phys. Lett. Vol. 73, pp. 2527-2529, 1998.
[49] Vettiger P., G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, and G. K. Binnig “The “Millipede”-Nanotechnology Entering Data Storage,” IEEE Transactions on Nanotechnology, Vol. 1, No. 1, March 2002.
[50] Vettiger P., M. Despont, U. Drechsler, U. Du¨rig, W. Ha¨ berle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, “More Than One Thousand Tips for Future AFM Data Storage,” IBM J. Res. Develop. Vol. 44, No. 3, MAY 2000.
[51] Hosaka S., H. Koyanagi, A. Kikukawa, M. Miyamoto, R. Imura, and J. Ushiyama, “Fabrication of nanometer-scale structures on insulators and in magnetic materials using a scanning probe microscope,” J. Vac. Sci. Technol. Vol. B13, pp. 1307-1311, 1995
[52] Hosaka S., H. Koyanagi, A. Kikukawa, M. Miyamoto, and K. Etoh, “Force modulation atomic force microscopy recording for ultrahigh density recording,” J. Vac. Technol. Vol. B15, pp. 788-793, 1997.
[53] Hosaka S., K. Etoh, A. Kikukawa, H. Koyanagi, and K. Itoh, “6.6 Mhz silicon AFM cantilever for high-speed readout in AFM based recording,” Microelectronic Eng., Vol. 46, pp. 109-122, 1999.
[54] Mamin H. J., R. P. Ried, B. D. Terris, D. Rugar, B, W. Chui, and T. K. Kenny, “High density data storage using micromachined probe,” Int. Conf. on Solid State Devices and Materials, Hamamatsu, pp. 222-223, 1997.
[55] Mamin H. J., B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, and D. Rugar, “High-density data storage using proximal probe techniques,” IBM J. Res. Develop., Vol. 39, pp. 681-699, 1995.
[56] Mamin H.J., D. Rugar, “Thermomechanical writing with an atomic force microscope,” Appl. Phys. Lett., Vol. 61, 1992.
[57] Mamin H., “Thermal writing using a heated atomic force tip,” Appl. Phys. Lett. Vol. 69, 1996
[58] Binnig G., C. F. Quate, “Atomic force microscope,” Phys. Rev. Lett., Vol. 56, No. 9, 1986.
[59] Sumio Hosaka, “SPM Based Recording Toward Ultrahigh Density Recording with Trillion Bits/ ,” IEEE Transcations on Magnetics, Vol. 37, No. 2, March 2001.
[60] Vettiger P., M. Despont, U. Drechsler, U. Du¨rig, W. Ha¨ berle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, “More Than One Thousand Tips for Future AFM Data Storage,” IBM J. Res. Develop. Vol. 44, No. 3, MAY 2000.
[61] Joseph A. Turner and Joshua S. Wiehn, “Sensitivity of flexural and torsional vibration modes of atomic force microscope cantilevers to surface stiffness variations,” Nanotechnology, Vol. 12, pp. 322–330, 28 August 2001.
[62] Rabe U., K. Janser, and W. Arnold, “Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment,” Rev. Sci. Instrum., Vol. 67, No. 9, September 1996.
[63] Taylor M.E., “Dynamics of piezoelectric tube scanenrs for scanning probe microscopy,” Rev. Sci. Instrum., Vol. 64, No. 1, January 1993.
[64] Bouhacina T., D. Michel, J. P. Aime, and S. Gauthier, “Oscillatoni of the cantilever in atomic force microscopy: Probing the sample response at the microsecond scale,” J. Appl. Phys., Vol. 82, No. 8, 15 October 1997.
[65] Gary J. Balas, John C. Doyle, Keith Glover, Andy Packard, and Roy Smith
“μ-Analysis and Synthesis Toolbox,” MUSYN Inc. & The Math Works Inc., 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張馨云(2000):如何建立積極、溫暖、友善的班級氣氛。教師之友,41,43-50。
2. 陳玉蘭(1999):國中師生對有效教學行為之意見調查研究。國立高雄師範大學教育學系教育學刊,15,171-225。
3. 陳建志(1998):族群及家庭背景對學業成績之影響模式—以台東縣原漢學童作比較。政大教育與心理研究,21,85-106。
4. 涂靜如、單文經(1995):國小「有效的常規管理者」之特質。教育研究資訊,1(3),76-93。
5. 紀惠英(1998):俗民數學與數學學習—從文化脈落的觀點看數學學習。花蓮師院學報,6,71-97。
6. 吳天泰(1996):泰雅父母對子女教育的看法。原住民教育季刊,4,22-33。
7. 吳明隆(2003):新時代班級經營的內涵與因應策略。國教天地,152,30-38。
8. 魏麗敏(1995):班級經營的理論與輔導策略。學生輔導,45,32-45。
9. 劉春榮(2003):教師績效評鑑的教育品質觀點。教育資料與研究,53,13-19。
10. 黃志賢(2000):原住民學生利用代數方法解題之研究。原住民教育季刊,21,17-38。
11. 黃茂夫、溫寶珠(1996):原住民學生在山地或平地就讀之學習成效差異研究。原住民教育季刊,3,21-48。
12. 黃惠慈(2000):原住民社區家庭教育推廣的工作模式。原住民教育季刊,19,21-40。
13. 郭木山(2003):談教育變革中校長教學領導的角色與做法。教育資料與研究,53,
14. 吳明隆(2001):班級經營中學生不當行為內涵的探究與因應。諮商與輔導,186,5-10。
15. 林義男(1993):國中學生家庭社經背景、父母參與及其學業成就關係。國立彰化師範大學輔導學報﹐16﹐157-212。
 
系統版面圖檔 系統版面圖檔