(3.235.139.152) 您好!臺灣時間:2021/05/11 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭澤昌
研究生(外文):Tse-Chang Peng
論文名稱:晶圓製造系統中以限制理論為基礎的多重式派工法則研究
論文名稱(外文):The Study of the TOC-based Multiple-Integrated Dispatching Rule in Semiconductor Manufacturing
指導教授:謝淑華謝淑華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:103
中文關鍵詞:多重式限制理論派工法則
外文關鍵詞:dispatching rulemultiple-integratedtheory of constraints
相關次數:
  • 被引用被引用:1
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
派工法則的研究是當前晶圓製造的重要課題,並且對系統績效影響甚大。在複雜的多產品晶圓混合生產中,一般派工法則不具備檢視晶圓在製品獲利能力,造成系統獲利無法提升,故侯氏[2001]藉著限制理論(Theory of Constraints, TOC)對系統資源消耗量的觀點,提出晶圓在製品現階段價值和獲利強度的估算法,發展出一系統化的限制理論基礎派工法則(Dispatch by theory of Constraint, DTC)。但是DTC忽略其他如交期、品質與在製品等因素,長期而言系統可能會受到罰金、商譽、品質不良和在製品囤積等因素影響系統最終獲利。且DTC在派工時如遇到在製品獲利強度相同而不足以決斷派工順序時,是以先到先做(First Come First Service, FCFS)法則僅考慮物件來到的先後順序派工,並無法根據現場的情況給予適當的派工。

  本研究提出以交期方面表現優良之CR法則、在製品數量上表現優良之MCR法則和在產品品質上表現優良之FSMCT法則修正DTC,組合為一個以DTC為基礎之多重優先派工法則,使DTC提高對交期、在製品與品質的反應能力。
  本研究以模擬模型,進行DTC與多重優先派工法則的績效評估。實驗結果發現多重優先派工法則可有效改善DTC於產品交期、在製品數量和產品品質等績效。
Job dispatch is an important issue in wafer fabrications. It affects system performance. However, few dispatching rules developed, in the past, focus on profit. Hou[2001] developed a TOC-based dispatching rule, named DTC (Dispatching by Theory of Constraints). Hou’s method based on the consumption of system resource can estimate the WIP cost and values. Based on the profit (the difference of values and cost) of the wafers, the job dispatching can then be assigned. Hence, DTC is superior to others from the profit viewpoint in a certain time-period. Can it meet other requirements such as due date, quality or/and minimum inventory? If it cannot, in the long run, DTC can never be a good dispatching rule from any view of points. Furthermore, in Hou’s study he uses FCFS to dispatch job when two jobs have the same profit. Instead of using wafer arriving time, it seems more effective to include due date, quality, or/and minimum inventory as the second and/or the third job dispatching criterion.

The main purpose of this study is to extend Hou’s simple-profit -based DTC to a multiple purpose dispatching method. Famous CR, MCR and FSMCT are included in the new method. CR is good in due date, MCR in low inventory, and FSMCT in quality. By simulations, several multiple purpose dispatching methods, by the combinations of DTC, CR, MCR and FSMCT, are performed. The simulation results indicate the best combination can effectively improve the performance of due date, quality and numbers of inventory.
目錄
中文摘要……………………………………………………………I
英文摘要……………………………………………………………III
目錄…………………………………………………………………VI
圖目錄…………………………………………………………… VII
表目錄………………………………………………………………VIII

目錄
第一章 緒論……………………………………………………………1
1-1 研究動機與背景…………………………………………………1
1-2 研究目的…………………………………………………………5
1-3 研究步驟…………………………………………………………5

第二章 文獻回顧………………………………………………………8
2-1派工法則文獻回顧………………………………………………8
2-1-1區域式派工法則相關文獻回顧……………………………9
2-1-2整體式派工法則相關文獻回顧……………………………11
2-2投料策略文獻回顧………………………………………………13

第三章 研究基礎………………………………………………………15
3-1機台加工簡介……………………………………………………15
3-2 DTC派工法則………………………………………………16
3-2-1 限制理論………………………………………………17
3-2-2 限制理論相關研究…………………………………17
3-2-3 DTC理論基礎…………………………………………18

第四章 探討DTC在交期、在製品數量和產品品質方面的績效……23
4-1 派工法則之探討……………………………………………23
4-1-1 派工法則…………………………………………………23
4-1-2 時幅的決定………………………………………………27
4-1-3 績效評估模式……………………………………………27
4-2 模擬實驗.………………………………………………………30
4-2-1實驗規劃…………………………………………………30
4-2-2研究範圍與系統假設……………………………………33
4-2-3模擬實驗平台的建立……………………………………34
4-2-3-1製程、設備介紹……………………………………34
4-2-3-2上線機台數量………………………………………37
4-2-3-3交期的建立…………………………………………38
4-2-3-4 模型建構……………………………………………39
4-3 模擬結果………………………………………………………45
4-3-1產品交期的模擬結果與討論……………………………45
4-3-2在製品的模擬結果與討論……………………………48
4-3-3產品品質的探討模擬結果與討論………………………53
4-4 小結………………………………………………………60

第五章 多重優先順序派工法則之研究…………………………61
5-1 派工法則的探討……………………………………………61
5-1-1 派工比例的研究………………………………………62
5-1-2多重優先派工法則的建立……………………………65
5-2 模擬實驗……………………………………………………65
5-2-1實驗規劃………………………………………………65
5-2-2派工模式建構……………………………………………69
5-2-3 模擬結果………………………………………………71
5-3 小結……………………………………………………………92

第六章 總結…………………………………………………………93
6-1 結論…………………………………………………………93
6-2 未來研究方向…………………………………………………93

參考文獻………………………………………………………………95

附錄 派工法則程式…………………………………………………100
圖目錄
圖3-1 批量機台加工步驟……………………………………………15
圖3-2 不同統計時段下的加工機台瓶頸機率………………………19
圖4-1 品質分佈示意圖……………………………………………29
圖4-2 實驗平台示意圖……………………………………………44
圖4-3 投料比1:1 獲利強度比1:3下產品品質分佈圖………………53
圖4-4 投料比1:1 獲利強度比1:5下產品品質分佈圖………………54
圖4-5 投料比1:3 獲利強度比1:3下產品品質分佈圖………………55
圖4-6 投料比3:1 獲利強度比1:3下產品品質分佈圖………………56
圖5-1 加工區域內優先權統計示意圖………………………………70
表目錄
表4-1之實驗設計………………………………………………………30
表4-2 對於交期之實驗規劃………………………………………31
表4-3 對於在製品之實驗規劃………………………………………32
表4-4 對於產品品質之實驗規劃……………………………………32
表4-5 晶圓製程資料…………………………………………………35
表4-6 機台資料表……………………………………………………36
表4-7 機台數量表……………………………………………………38
表4-8 基本物件表……………………………………………………40
表4-9 控制物件表……………………………………………………41
表4-10 模擬系統物件關聯階層表…………………………………42
表4-11 DTC、EDD、CR對產品交期之模擬結果……………………46
表4-12 DTC、MBS、MCR對在製品囤積之模擬結果………………49
表4-13 DTC、SPT、FSMCT對產品品質之模擬結果…………………58
表5-1 採用DTC派工發生優先權k值相同的情況而以FCFS派工的比例……………………………………………………………63
表5-2 在產品投料比1:1獲利比1:3時DTC下各派工法則無法判斷的比例……………………………………………………………64
表5-3 多重優先順序派工法則之實驗規劃…………………………67
表5-4 多重優先順序之派工法則採用投料比1:1獲利強度比1:3之模擬結果…………………………………………………………72
表5-5多重優先順序法則與DTC於投料比1:1獲利強度比1:3之延遲率的比較………………………………………………………75
表5-6 多重優先順序法則與DTC於投料比1:1獲利強度比1:3之在製品數量的比較…………………………………………………76
表5-7 多重優先順序法則與DTC於投料比1:1獲利強度比1:3之不良品比例的比較…………………………………………………76
表5-8 多重優先順序之派工法則於投料比1:1獲利強度比1:5之模擬結果……………………………………………………………77
表5-9 多重優先順序法則與DTC於投料比1:1獲利強度比1:5之延遲率的比較………………………………………………………80
表5-10 多重優先順序法則與DTC於投料比1:1獲利強度比1:5之在製品數量的比較……………………………………………81
表5-11 多重優先順序法則與DTC於投料比1:1獲利強度比1:5之不良品比例的比較………………………………………………81
表5-12 多重優先順序之派工法則於投料比1:3獲利強度比1:3之模擬結果……………………………………………………………82
表5-13 多重優先順序法則與DTC於投料比1:3獲利強度比1:3之延遲率的比較……………………………………………………85
表5-14 多重優先順序法則與DTC於投料比1:3獲利強度比1:3之在製品數量的比較………………………………………………86
表5-15 多重優先順序法則與DTC於投料比1:3獲利強度比1:3之不良品比例的比較………………………………………………86
表5-16 多重優先順序之派工法則於投料比3:1獲利強度比1:3之模擬結果……………………………………………………………87
表5-17 多重優先順序法則與DTC於投料比3:1獲利強度比1:3之延遲率的比較……………………………………………………90
表5-18 多重優先順序法則與DTC於投料比3:1獲利強度比1:3之在製品數量的比較………………………………………………91
表5-19 多重優先順序法則與DTC於投料比3:1獲利強度比1:3之不良品比例的比較………………………………………………91
呂啟誠,“探討半導體微影製程在不同生產條件下最佳檢測法則與派工法則”, 國立台灣大學機械工程研究所, 2003.

林佩蘭,“運用系統分析技術建立晶圓廠製造成本模型與其作業管理之應用”, 國立臺灣大學會計學研究所碩士論文, 1999.

侯凱中,“以限制理論為基礎的半導體晶圓製造系統派工法則研究”,國立台灣大學機械工程研究所, 2001.

徐光宏,“晶圓製造廠黃光區派工法則之探討”, 國立交通大學工業工程研究所碩士論文, 1996.

麥昭仁,“晶圓製造廠主要幾種派工法則之設計”, 國立交通大學工業工程研究所碩士論文, 1996.

許榮通,“利用實驗設計方法尋求適宜生產環境之派工法則”, 國立台灣大學機械工程研究所, 2000.

馮鈺敏,“考慮晶圓製造廠整體績效之組合式及時派工法則”, 國立交通大學工業工程研究所碩士論文, 1997.

莊達人,“VLSI 製造技術3 RD Ed , 高立圖書有限公司, 台北市, 1996.

劉其昌,“晶圓批量異常等待時間為導向之派工法則”, 國立交通大學工業工程與管理研究所, 2002.

Bertrand. J.W.M., and Wortmann. J.C., “Production Control and Information Systems for Component-Manufacturing Shops”, Elsevier Publishing Company, Amsterdam, 1981.

Blackstone, J.H., Philips, D.T., and Hogg, D.L.,“A State-of-the-Art Survey of Dispatching Rules for Manufacturing Job Shop Operations,”International Journal of Production Research, Vol. 25, pp. 1143-1156, 1982.

Blackstone, J.H.,“Theory of Constraints-A Status Report,”International Journal of Production Research, Vol. 39, No. 6, pp. 1053-1080, 2001.

Boons, A.N.A.M.,“Product Costing for Complex Manufacturing Systems,”International Journal of Production Economics, No. 55, pp. 241-255, 1998.
Chen, L.H., and Chen, Y.H.,“A Design Procedure for a Robust Job Shop Manufacturing System under a Constraint Using Computer Simulation Experiments,”Computers Industry Engineering, Vol. 30, No. 1, pp. 1-12, 1996.

Chen, Y.J., Su, Y.J., Hong, M.S., and Wang, I.,“Real-Time Dispatching Reduces Cycle Time,”Semiconductor International, pp.109-112, 2000.

Chou, Y.C., and Hong, I.H.,“A Methodology for Product Mix Planning in Semiconductor Foundry Manufacturing,”IEEE Transactions on Semiconductor Manufacturing, Vol. 13, No. 3, pp. 278-285, 2000.

Crandall, R.E., and Burwell, T.H.,“The Effect of Work-In-Process Inventory Levels on Throughput and Lead Times,”Production and Inventory Management Journal, Vol. 34, No. 1, pp. 6-12, 1993.

Dabbas, R.M., Chen, H.M., Fowler, J.W., and Shunk, D.,“A Combined Dispatching Criteria Approach to Scheduling Semiconductor Manufacturing Systems,”Computers & Industrial Engineering, Vol. 39, pp. 307-324, 2001.

Dabbas, R.M., Fowler, J.W., Member, IEEE,“A New Scheduling Approach Using Combined Dispatching Criteria in Wafer Fabs,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3, pp. 501-510, 2003.

Dabbas, R.M., Fowler, J.W., Rollier, D.A., and Mccarville, D.“Multiple Response Optimization Using Mixture-Designed Experiments and Desirability Functions in Semiconductor Scheduling,”International Journal of Production Research, Vol. 41, No. 5, pp. 939-961, 2003.

Glassey, C.R., and Resende, M.G.C.,“Closed-Loop Job Release Control for VLSI Circuit Manufacturing,”IEEE Transactions on Semiconductor Manufacturing, Vol. 1, No. 1, pp. 36-46, 1988.

Glassey, C.R., Member, IEEE, and Weng W.,“Dynamic Batching Heuristic for Simultaneous Processing,”IEEE Transactions on Semiconductor Manufacturing, Vol. 4, No. 2, pp.77-82, 1991.

Gupta, M., Ko, H.J., and Min, H.,“TOC-Based Performance Measures and Five Focusing Steps in a Job-Shop Manufacturing Environment,”International Journal of Production Research, Vol. 40, No. 4, pp. 907-930, 2002.

Gurnani, H., Anupindi, R., and Akella, R., Member, IEEE,“Control of Batch Processing Systems in Semiconductor Wafer Fabrication Facilities,”IEEE Transactions on Semiconductor Manufacturing, Vol. 5, No. 4, pp. 319-328, 1992.

Ioannou, G., and Sullivan, W.G.,“Use of Activity-Based Costing and Economic Value Analysis for the Justification of Capital Investments in Automated Material Handling Systems,”International Journal of Production Research, Vol. 37, No. 9, pp. 2109-2134, 1999.

Kee, B., and Schmidt, C.,“A Comparative Analysis of Utilizing Activity-Based Costing and the Theory of Constraints for Marking Product-Mix Decisions,”International Journal of Production Economics, No. 63, pp. 1-17, 2000.

Kim, Y.D., Kim, J.U., Lim, S.K., and Jun H.B.,“Due-Date Based Scheduling and Control Policies in a Multiproduct Semiconductor Wafer Fabrication Facility,”IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 1, pp. 155-164, 1998.

Li, S., Tang T., and Collins D.W.,“Minimum Inventory Variability Schedule with Applications in Semiconductor Fabrication,”IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 1, pp. 145-149, 1996.

Lou, S., and Kager, P.W., “A Robust Production Control Policy for VLSI Wafer Fabrication,” IEEE Transactions on Semiconductor Manufacturing, Vol. 2, No. 4, pp. 159-164, 1989.

Lozinski, C., and Glassey, C.R.,“Bottleneck Starvation Indicators for Shop Floor Control,”IEEE Transactions on Semiconductor Manufacturing, Vol. 1, No. 4, pp.147-153, 1988.

Lu, S.C.H., Ramaswamy, D., Kumar, P.R., and Fellow, IEEE,“Efficient Scheduling Policies to Reduce Mean and Variance of Cycle-Time in Semiconductor Manufacturing Plants,”IEEE Transactions on Semiconductor Manufacturing, Vol. 7, No. 3, pp.1374-388, 1994.

Min, H.S., and Yih, Y.,“Selection of Dispatching Rules on Multiple Dispatching Decision Points in Real-Time Scheduling of a Semiconductor Wafer Fabrication System,”International Journal of Production Research, Vol. 41, No. 16, pp. 3921-3941, 2003.

Narahari, Y., and Khan, L.M.,“Performance Analysis of Scheduling Policies in Re-Entrant Manufacturing Systems,”Computers Operations Research, Vol. 23, No. 1, pp. 37-51, 1996.

Nemoto, K., Member, IEEE, Akcali, E., and Uzsoy, R.M.,“Quantifying the Benefits of Cycle Time Reduction in Semiconductor Wafer Fabrication,”IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 1, pp. 39-47, 2000.

Park, Y., Kim, S., and Jun, C.H.,“Mean Value Analysis of Re-Entrant Line with Batch Machines and Multi-Class Jobs,”Computers & Operations Research, Vol. 29, pp. 1009-1024, 2002.

Pickerill, J.,“Better Cycle Time and On-Time Delivery via Real-Time Dispatching,”Solid State Technology, pp. 151-154, 2000.

Sperarman, M.L., and Woodruff, D.L., “CONWIP : a pull alterative to kanban,” International Journal of Production Research, Vol 28, No. 5, pp. 879-894, 1990.

Tyan, J.C., Chen, J.C., and Wang F.K.,“Development of a State-Dependent Dispatch Rule Using Theory of Constraints in Near-Real-World Wafer Fabrication,”Production Planning & Control, Vol. 13, No. 3, pp. 253-261, 2002.

Uzsoy, R., Lee, C.Y., Martin-Vega, L.A.,“A Review of Production Planning and Scheduling Models in the Semiconductor Industry Part I: System Characteristics, Performance Evaluation and Production Planning,”IIE Transactions, Vol. 24, No. 4, pp. 47-58, 1992.

Uzsoy, R., Lee, C.Y., Martin-Vega, L.A.,“A Review of Production Planning and Scheduling Models in the Semiconductor Industry Part II : Shop-Floor Control,”IIE Transactions, Vol. 26, No. 5, pp. 44-55, 1994.

Vepsalainen, A., and Morton, T.E., “Priority rules and lead time estimation for job shop scheduling with weighted tardiness costs,”Management Scinces, Vol.33, pp. 1036-1047, 1987.

Wein, L.M.,“Scheduling Semiconductor Wafer Fabrication,”IEEE Transactions on Semiconductor Manufacturing, Vol. 1, No. 3, pp. 115-130, 1988.

Willie, W., and Leachman, R.C.,“An Improved Methodology for Real-Time Production Decisions at Batch-Process Work Stations,”IEEE Transactions on Semiconductor Manufacturing, Vol. 6, No. 3, pp.219-225, 1993.

Zee, D.J., Harten, A.V., and Schuur, P.C.,“Dynamic Job Assignment Heuristics for Multi-Server Batch Operations – A Cost Based Approach,”International Journal of Production Research, Vol. 35, No. 11, pp. 3063-3093, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔