(18.206.187.91) 您好!臺灣時間:2021/05/19 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭少傑
研究生(外文):Shao-Chieh Chen
論文名稱:具高分子毛細節構迴路式熱管之性能測試
論文名稱(外文):The Performance Test of The Loop Heat Pipe with Polymer Wick
指導教授:陳瑤明
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:74
中文關鍵詞:鹽溶濾法毛細節構迴路式熱管
外文關鍵詞:loop heat pipeparticulate leachingwick structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用鹽溶濾法製作出適用於迴路式熱管之高分子毛細結構,並由量測結果求得以孔隙度預測滲透度之經驗公式。接著由理論計算之方式進行高分子毛細結構與加壓燒結金屬毛細結構最大熱傳量之比較。最後利用熱阻分析探討不同熱導係數的毛細結構對於系統熱阻之影響,並藉由實驗的方法進行高分子毛細結構與金屬燒結毛細結構之評比。
本實驗利用理論分析,計算高分子毛細結構與金屬加壓燒結毛細結構於迴路式熱管之最大熱傳量。在相同孔隙度之下,由於高分子毛細結構具有較高之滲透度,所以其最大熱傳量優於金屬加壓燒結毛細結構。由熱阻分析發現,當系統使用高dP/dT值的工質時,毛細結構的材質對於系統熱阻的影響並不明顯。當系統使用低dP/dT值的工質時,使用高分子毛細結構之系統熱阻低於金屬毛細結構。另外將有效孔徑12μm、孔隙度65%之高分子與金屬鬆裝燒結毛細結構,分別置入迴路式熱管進行熱傳性能測試,其結果顯示在相同的熱傳量下,高分子毛細結構之熱阻為0.19 oC/W,優於金屬鬆裝燒結毛細結構的0.2 oC/W。
本實驗所製作之高分子毛細結構,除了在熱傳性能上優於金屬燒結毛細結構外,若考量製造成本、品質控管以及可製造出高孔隙度之毛細結構等因素時,高分子毛細結構應用於迴路式熱管應頗具潛力。
第一章 緒 論………………………………………………………………1
1.1前言……………………………………………………………………1
1.2文獻回顧………………………………………………………………5
1.3研究目的………………………………………………………………11第二章 實驗原理及理論分析 ……………………………………………12
2.1迴路式熱管操作原理…………………………………………………12
2.1.1毛細限制………………………………………………………15
2.1.2啟動限制………………………………………………………15
2.1.3液體過冷度限制………………………………………………16
2.1.4補償室體積限制………………………………………………16
2.2理論分析………………………………………………………………18
2.2.1流動壓降分析…………………………………………………18
2.2.1.1液-汽介面之毛細壓差……………………………………18
2.2.1.2蒸發器溝槽內蒸汽流動壓降………………………………18
2.2.1.3汽體段流動壓降…………………………………………19
2.2.1.4流經毛細結構之壓降………………………………………20
2.2.1.5液體段及冷凝段流動壓降…………………………………20
2.2.1.6重力壓降…………………………………………………21
2.2.2工質注入量……………………………………………………22
第三章 實驗設備與方法…………………………………………………23
3.1毛細結構製造與測試…………………………………………………23
3.1.1毛細結構製造設備………………………………………………23
3.1.2毛細結構之製造過程……………………………………………24
3.1.3毛細結構參數量測設備…………………………………………27
3.2熱傳性能測試設備……………………………………………………28
3.3熱傳性能測試…………………………………………………………31
3.3.1待測迴路式熱管安裝過程………………………………………31
3.3.2性能測試步驟……………………………………………………31
3.4系統清洗與组裝………………………………………………………32
3.5工質注入統之製作……………………………………………………33
3.6工質注入………………………………………………………………34
3.7誤差分析………………………………………………………………35
3.8實驗參數………………………………………………………………39
第四章 結果與討論…………………………………………………………40
4.1迴路式熱管設計上的考量……………………………………………40
4.1.1工質之選擇………………………………………………………40
4.1.2毛細結構材料之選擇…………………………………………41
4.1.2.1高分子孔洞毛細結構與金屬毛細結構之比較…………42
4.1.2.2高分子毛細結構原料的選擇…………………………….44
4.1.3管路材質之選擇…………………………………………………45
4.1.4蒸發器幾何外型之選擇…………………………………………46
4.1.5毛細結構厚度之選擇……………………………………………46
4.1.6傳輸管路之設計…………………………………………………48
4.1.7冷凝器之設計……………………………………………………48
4.1.8補償室之設計……………………………………………………49
4.2高分子毛細結構參數分析……………………………………………50
4.3迴路式熱管性能測試…………………………………………………54
4.3.1具高分子毛細結構迴路式熱管性能測試………………………54
4.3.2高分子與金屬毛細結構於迴路式熱管之性能比較……………58
第五章 結論與建議…………………………………………………………69
5.1結論……………………………………………………………………69
5.2建議……………………………………………………………………70
Antonios G. Mikos, Yuan Bao, Linda G. Cima, Donald E. Ingber, Joseph P. Vacanti and Robert Langer, “Preparation of Poly(glycolic acid) Bonded Fiber Structures for cell attachment and transplantation,” Journal of Biomedical Materials Research, Vol.27, pp.183-189, 1993.

Antonios G. Mikos, Amy J. Thorsen, Lisa A. Czerwonka, Yuan Bao, Robert Langer, Douglas N. Winslow and Joseph P. Vacanti, “Preparation and Characterization of Poly(L-lactic acid) Foams,” POLYMER, Volume 35, Number 5, pp.1068-1077, 1994.

Chun-Jen Liao, Chin-Fu Chen, Jui-Hsiang Chen, Shu-Fung Chiang, Yu-Ju Lin, Ken-Yuan Chang, “Fabriction of Porous biodegradable Polymer Scaffolds Using a Solvent Merging/Particulate Leaching Method,” John Wiley & Sons, Inc., pp.676-681, 2001.

Cheung, K. H., Hoang, T. T., Ku. J. and Kaya, T., “Thermal Performance and Opera- tional Characteristics of Loop Heat Pipe (NRL LHP),” SAE Paper No. 981813, 1998.

Chi, S. W., “Heat Pipe Theory and Practice,” McGraw-Hill, New York,1976.

Christoph B., “Theoretical Investigation of Advanced Capillary Structures in Grooved Heat Pipe Evaporators for Space Applications,” Society of Automotive Engineers, Paper 2000-01-2319, 2000.

Dunn, P.D., and Reay, D.A., “Heat Pipes,” Pergamon Press, Oxford, 1994.

Faghri, A., “Heat Pipe Science and Technology,” Taylor & Francis, Washington, DC. 1995.

German, “Powder Metallurgy Science” Metal Powder Industries Federation, 1984.

Gluck, D., Gerhart, C., and Stanley, S., “Characterizztion of a High Capacity, Dual Compensation Chamber Loop Heat Pipe,” Space Technology and Applications
International Forum, The American Institute of Physics, pp.943-948, 1999.

Hoang, T. T., and Kaya, T., “Mathematical Modeling of Loop Heat Pipes,” AIAA
Paper No.99-0477, 1999.

Holman J. P. “Heat Transfer,” 8th McGraw-Hill, New York,1997.

Kaya, T. and Ku, J., “A Parametric Study of Performance Characteristics of Loop
Heat Pipe,” SAE Paper No. 1999-01-2006, pp.496-502, 1999.

Kaya, T. et al., “Investigation of Low Power Start-Up Characteristics of A Loop Heat Pipe,” NASA GSFC, Space Technology and Applications International Forum,1999.

Kaya, T., Ku, J., Hoang, T. T., and Cheung, M. K., “Investigation of Low Power Start-Up Characteristics of A Loop Heat Pipe,” Space Technology and Applications
International Forum, American Institute of Physics, New York, 1999.

Kaya, T., Baker, C., and Ku, J., “Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes,” SAE Paper No.2000-01-2406, pp. 580-586, 2000.

Kaya T. and Jentung Ku, “Thermal Operational Characteristics of a Small-Loop Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol.17 No.4 October-December 2003.

Kim, J., and Golliher, E., “Steady State Model of a Micro Loop Heat Pipe,” 18th IEEE SEMI-THERM Symposium, pp.137-144, 2002.

Khrustalev, D., “Loop Heat Pipe Technology for Electronics Cooling,” Proceedings of SPIE, International Conference on High-Density Interconnect and SystemsPackaging, Vol.4428, pp.375-380, 2001.

Ku, J., “Operating Characteristics of Loop Heat Pipes,” SAE Paper No.1999, pp.503-519, 1999.

Ku, J., Rogers, P., and Cheung, K., “Investigation of Low Power Operation in a Loop Heat Pipe,” SAE Paper No.2001-01-2192, 2001.

Maidanik, Y. f., Fershtater, Y. G., and Solodovnik, N. N., “Loop Heat Pipes:Design,
Investigation, Prospects of Use in Aerospace Technics,” SAE Paper No.941185,1994.
Maidanik, Y. F., Pastukhov, V. G. and Chernyshova, M. A., “Development and
Investigation of Miniature Loop Heat Pipe,” SAE Paper No.1999-01-1983, pp.483-487, 1999.

Maidanik, Y. F., Vershinin, S. V., and Chernysheva, M. A., “Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator,” SAE Paper No.2000-01-2491, pp.652-656, 2000.

Maidanik, Y. F., Vershinin, S., Kholodov, V., and Dolgirev, J., “Heat Transfer Apparatus,” US Patent, No.4515209, May 7, 1985.

Muraoka, I., Ramos, F. M., and Vlassov, V. V., “Analysis of the operational characte- ristics and limits of a loop heat pipe with porous element in the condenser,” Internati- onal Journal of Heat and Mass Transfer, Vol.44, pp.2287-2297, 2001.

Neison J. G., Gregg J. B. and Joseph M. G. “Fine Pore Loop Heat Pipe Wick Structure Development,” SAE Paper No.961319, 1996.

Nikitkin, M., and Bienert, W. B., “Non-Condensable Gases and Loop Heat Pipe Oper- ation ,” SAE Paper No.981854, pp.394-399, 1998.

Qingpu Hou, Dirk W. Grijpma and Jan Feijen “Porous Polymeric Structures for Tissue Engineering Prepared by a Coagulation, Compression Moulding and Salt Leaching Technique,” Biomaterials, 24, pp1937-1947, 2003.

Rodriguez, J. I., and Na-Nakornpanom, A., “Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe,” SAE Paper No.2001-01-2235, 2001.

Schlitt, R., “Performance characteristics of Recently Developed High-Performance Heat Pipes,” Heat Transfer Engineering, Vol. 16, No. 1, 1995, pp.44-52

Stephan, P. C. and Busse, C. A.,“Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls,” International Journal of Heat and Mass Transfer, Vol.30, No, 2, 1992, pp.383-391.

Tracey, V. A. “Pressing and Sintering of Nickel Powders,” The International Journal of Powder Metallurgy & Powder Technology, Vol.20, No.4, pp.281-285, 1984.

Takashi Kobayashi, Tetsurou Ogushi, Seiji Haga, Eiichi Ozaki, and Masao Fujii, “Heat Transfer Performance of a Flexible Looped Heat Pipe Using R134a as a Working Fluid: Proposal for Method to Predict the Maximum Heat Transfer Rate of FLHP,” Heat Transfer-Asian Research, 32(4), pp.306-318, 2003.

Wolf, D. A., Ernst, D. M., and Phillips A. L., “Loop Heat Pipes-Their Performance and Potential,” SAE Paper No.941575, 1994.

Wrenn, K. R., Wolf, D. A., and Kroliczek, E. J., “Effect of Noncondensible Gas and Evaporator Mass on Loop Heat Pipe Performance,” SAE Paper No.2000-01-2409, pp.603-614, 2001.

杜逸虹 “聚合體學” 三民書局 , 1978.

黃文宏, 燒結式微熱管之製造與性能測試”, 國立台灣大學碩士論文, 2000.

賴錦川,“燒結式微熱管毛細結構參數之影響研究”, 國立台灣大學碩士論文, 2000.

陳泰宇,“迴路式熱管製造與性能測試”, 國立台灣大學碩士論文, 2001.

張文華,“迴路式熱管參數影響之研究”, 國立台灣大學碩士論文, 2001.

黃坤祥 “粉末冶金學” 中華民國粉末冶金協會 , 2001.

朱振毅, “微小型迴路式熱管之設計製造及性能測試” , 國立台灣大學碩士論文, 2002.

王添銘 “迴路式熱管之毛細結構的設計製造及性能測試”, 國立台灣大學碩士論文, 2002.

鄭國章 “具高緻密度毛細結構之迴路式熱管”, 國立台灣大學碩士論文, 2003.

高濂, 孫靜和劉陽橋 “奈米粉體的分散與表面改質” , 化學工業出版社, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top