(18.204.227.34) 您好!臺灣時間:2021/05/14 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊霖
研究生(外文):Chun-Lin Chen
論文名稱:不同體積濃度液滴撞擊平板之現象研究
論文名稱(外文):The phenomena research of different volume concentration droplet Impacting on the flat surface
指導教授:王興華
指導教授(外文):Ching-Hua Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:56
中文關鍵詞:液滴撞擊體積濃度
外文關鍵詞:volume concentrationdropletimpact
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要在觀察微小液滴撞擊平板穩定後的尺寸,藉由改變液滴的尺寸、速度以及利用水、不同體積濃度的水-乙醇和水-甘油溶液,以探討這些因素對其尺寸的影響。實驗結果發現,液滴的最大擴張半徑會隨著尺寸或速度的增加而變大,但是液滴和平板的接觸角卻是隨兩者增加而變小。另外,就不同的體積濃度而言,乙醇的含量越多時,液滴最大擴張半徑對速度的變率會隨尺寸變大而增加,但是對水-甘油溶液來說,甘油的含量越大則液滴的最大擴張半徑會接近撞擊前液滴半徑的1.5倍。
The purpose of the research is to observe the size of the minute drops which are after impacting on the flat surface and became steady. By changing the size and velocity of the drops, using water, and utilizing water-ethanol and water-glycerin with different volume concentration, we probed into those factors influencing the steady size. It turns out that along with the increase of the size or velocity, the max-dilated radius will rise; however, the contact angle of the droplet and flat surface will decrease due to the increase of both. Furthermore, in terms of the different volume concentration, when the content of ethanol gets more, the max-dilated radius of drops to the rate of the change of the velocity will increase since the size expands. Nevertheless, as for water-glycerin, the more the contest of glycerin is, the max-dilated radius will be more closer to 1.5 times size of the droplet before crashing.
目錄
中文摘要…………………………………………………………………i
英文摘要……………………………………………………………ii
目錄……………………………………………………………………iii
圖表目錄………………………………………………………………v
符號說明……………………………………………………………viii
第一章 緒論………………………………………………………1
1.1 前言……………………………………………………………1
1.2 文獻回顧………………………………………………………2
1.3 實驗動機………………………………………………………6
第二章 基本理論…………………………………………………8
2.1 液滴撞擊平板理論……………………………………………8
2.2 液滴擴張之簡單幾何…………………………………………10
2.3 液滴附著與濺起的臨界參數理論……………………………12
第三章 實驗設備與影像擷取系統…………………………………15
3.1 液滴產生裝置…………………………………………………15
3.1.1液滴產生器………………………………………………15
3.1.2電子控制箱………………………………………………17


3.2 影像擷取系統…………………………………………………19
3.2.1閃頻儀.……………………………………………………20
3.2.2 C.C.D.及放大鏡頭組…………………………………….20
3.2.3影像擷取及處理軟體…………………………………….21
3.3 液滴撞擊設備…………………………………………………22
3.4 實驗說明………………………………………………………23
3.4.1實驗溶液說明……………………………………………23
3.4.2實驗觀察的時間點……………………………………….23
3.4.3實驗方法………………………………………………….23
第四章 實驗結果與討論…………………………………………25
4.1工作流體:水……………………………………………………25
4.2工作流體:水-乙醇混合液……………………………………26
4.3工作流體:乙醇和甘油…………………………………………27
4.4工作流體:水-甘油混合液……………………………………28
第五章 結果與未來展望…………………………………………29
5.1 實驗結果……………………………………………………29
參考文獻………………………………………………………………30

圖表目錄
圖 1.1液滴撞擊平板或液膜可能發生的現象………………………34
圖 1.2皇冠圖…………………………………………………………35
圖 1.3 Mundo 等人的實驗儀器………………………………………36
圖 1.4液滴撞擊之濺起門檻與無因次表面粗糙度的關係圖……..37
圖 2.1液滴附著平板的情形…………………………………………38
圖 3.1實驗器材的實體圖……………………………………………39
圖 3.2實驗器材配置圖………………………………………………40
圖 3.3液滴產生器之構造圖和實體圖………………………………41
圖3.4 液滴滴落過程…………………………………………………42
圖 3.5電子控制箱之實體圖…………………………………………43
表4.1 水以不同尺寸和速度對穩定狀態的尺寸數據………………44
圖4.1 水在不同尺寸下改變速度對Rh的關係………………………45

圖4.2水在不同尺寸下改變速度對Rd的關係………………………45

圖4.3水以尺寸為480μm速度為1.01m/s,產生二次液滴直徑約為80μm…………………………………………………………....46

圖4.4 投影片以原子力顯微鏡(AFM)測試結果…………………….47

表4.2不同水-乙醇體積濃度以不同尺寸和速度對穩定狀態的尺寸數據.................................................48
圖4.5 水-乙醇體積濃度75:25在不同尺寸下改變速度對Rh的關係……………………………………………………………….49
圖4.6水-乙醇體積濃度75:25在不同尺寸下改變速度對Rd的關係……………………………………………………………….49
圖4.7水-乙醇體積濃度50:50在不同尺寸下改變速度對Rh的關係……………………………………………………………….50
圖4.8水-乙醇體積濃度50:50在不同尺寸下改變速度對Rd的關係……………………………………………………………….50
圖4.9水-乙醇體積濃度25:75在不同尺寸下改變速度對Rh的關係……………………………………………………………….51
圖4.10水-乙醇體積濃度25:75在不同尺寸下改變速度對Rh的關係……………………………………………………………….51
圖4.11水改變參數對所得Rd取一次線性關係…………………….52
圖4.12水-乙醇體積濃度75:25改變參數對所得Rd取一次線性關係……………………………………………………………….52
圖4.13水-乙醇體積濃度25:75改變參數對所得Rd取一次線性關係……………………………………………………………….53
表4.3不同水-甘油體積濃度以不同尺寸和速度對穩定狀態的尺寸數據.................................................54
圖4.14水-甘油體積濃度75:25在不同尺寸下改變速度對Rh的關係……………………………………………………………….55
圖4.15水-甘油體積濃度75:25在不同尺寸下改變速度對Rd的關係……………………………………………………………….55
圖4.16水-甘油體積濃度50:50在不同尺寸下改變速度對Rh的關係……………………………………………………………….56
圖4.17水-甘油體積濃度50:50在不同尺寸下改變速度對Rd的關係……………………………………………………………….56
【1】M. Rein, ”Phenomena of liquid droplet impact on solid and liquid surfaces”, Fluid Dynamics Research , Vol. 12, pp. 61-93, 1993.
【2】M. B. Lesser, ”Analytic solutions of liquid-drop impact problems”, Proc. R. Soc. London A, Vol. 377, pp. 289-308, 1981.
【3】E. B. V. Dussan, ”On the ability of drops or bubbles to stick to nonhorizontal surface of solids. Part2: Small drops or bubbles having contact angles of arbitrary size”, J. Fluid Mech., Vol. 151, pp. 1-20, 1984.
【4】C. Pozrikidis, ”The deformation of a liquid drop moving normal to a plane wall”, J. Fluid Mech., Vol. 215, pp. 331-363 , 1990.
【5】J. Fukai, Y. Shiiba, T. Yamamoto et al., ” Wetting effect on the spreading of a liquid droplet colliding with a flat surface :Experiment and Modeling”, Phys. Fluids, Vol. 7(2), pp. 236-247, 1995.
【6】J. Fukai, Z. Zhao, D. Poulikakos, C. M. Megaridis and O. Miyatake, ”Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface“, Phys. Fluids A, Vol. 5(11), pp. 2588-2599, 1993.
【7】Hatta, Natsho, Fujimoto, Hitoshi and Takuda Hirohiko,”Deformation process of a water droplet impinging on a solid surface”, Transactions of the ASME, Vol. 117, pp. 394-401, 1995.
【8】A. M. Worthington, ”On the forms assumed by drops of liquids falling vertically on horizontal plate”, Proc. R. Soc. London A, Vol. 25, pp. 261-271, 1876.
【9】A. M. Worthington, ”On impact with a liquid surface”, Proc. R. Soc. London A, Vol. 34, pp. 217-230, 1883.
【10】A. M. Worthington, “A study of splashes”, London: Longman & Green, 1908;reprinted, New York: Macmillian, 1963.
【11】O. G. Engel, “Waterdrop collisions with solid surfaces”, J. Rec. Nat.Bure. Stand., Vol. 54, N0. 5, pp. 281-298, 1955.
【12】A. L. Yarin and D. A. Weiss, ” Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematical discontinuity”, Journal Fluid Mech., Vol. 283, pp. 141-173, 1995.
【13】P. H. Gregory, E. J. Guthrie and M. E. Bunce, ”Experiment on splash dispersal of fungus spores”, J. Gen. Microbiol, Vol. 20, pp. 328-354, 1959.
【14】P. V. Hobbs and T. Osheroff, ” Splashing of Drops on Shallow Liquids”, Science, Vol. 158, pp. 1184-1186, 1967.
【15】C. D. Stow and R. D. Stainer, ”The physical products of a splashing water drop”, Journal of the Meteorological Society of Japan, Vol. 55, No.5, pp. 518-531, 1977.
【16】G. E. Cossali, A. Coghe and M. Marengo, “The impact of single drop on a wetted solid surface”, Experiments in Fluids, Vol. 22, pp. 463-472, 1997.
【17】Chr. Mundo , M. Sommerfeld and C. Tropea, “On the Modeling of Liquid Sprays Impinging on Surfaces”, Atomization and Sprays, Vol. 8, pp. 625-652, 1998.
【18】 P. Walzel, ”Zerteilgrenze beim Tropfenprall”, Chem. Ing. Tech., Vol. 52, pp. 338-339, 1980.
【19】C. D. Stow and M. G. Hadfield, “An experimental investigation of fluid flow resulting from the impact of water drop with an unyielding”, Proc. R. Soc. London A, Vol. 373, pp. 419-441, 1981.
【20】CHR. Mundo, M. Sommerfeld and C. Tropea, ” Droplet-Wall Collisions : Experimental Studies of The Deformation and Breakup Process”, Int. J. Multiphase Flow , Vol. 21, No. 2, pp. 151-173, 1995.
【21】M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary Effects during Droplet Impact on a Solid Surface”, Phys. Fluids, Vol. 8(3), pp. 650-659, 1996.
【22】Franklin T. Dodge, “The Spreading of Liquid Droplets on Solid Surfaces”, Journal of colloid and interface science, Vol. 121, No. 1, pp. 154-160, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔