(18.206.238.77) 您好!臺灣時間:2021/05/12 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏睿
研究生(外文):Po-Jui Chen
論文名稱:自動指紋認證系統之發展
論文名稱(外文):Development of Automatic Fingerprint Verification Systems
指導教授:黃漢邦黃漢邦引用關係
指導教授(外文):Han-Pang Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:104
中文關鍵詞:指紋辨識指紋強化脈波差值轉換小波轉換蓋伯函數
外文關鍵詞:fingerprint verificationfingerprint enhancementGabor filterDifferential pulse transformwavelet transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大多數的指紋辨識系統,都是利用指紋的細部特徵點,作為辨識的依據。由於細微特徵比對法的辨識率,取決於指紋影像的品質,所以往往需要大量的影像前處理,來去除影像雜訊,強化指紋本體的影像。這不但會增加系統的運算負載,還會減緩辨識速度。會了避免上述缺陷,本文結合自動選取閥值法與脈差調變,配合小波轉換的特性,將指紋在空間域的訊號,轉換至頻率域中。利用指紋影像分佈在各頻帶中的能量大小,來當作指紋的特徵值,辨別不同個體的指紋,減低系統運算負載。
對於品質不佳的指紋影像,我們結合小波轉換與蓋伯函數的功能,修補指紋中破損的部分。此外,本文還利用指紋核心點與旋轉點作為輔助基準,來解決因為指紋位置的平移、旋轉所造成之頻率特徵辨識缺失的問題。從實驗結果證實,運用倒傳遞類神經網路作為辨識器,本系統最高的辨識率可達到93%以上。對於位置有所變動,或是品質不佳的指紋影像,亦能獲得此辨識率。
Most fingerprint verification systems take advantage of fingerprint minutiae as matching features. Since the classification rate of the minutia-based method is determined by the quality of input fingerprint images, the minutia-based method usually demands a large amount of image preprocessing to remove signal noise. Obviously, this not only increases system computation complexity, but also reduces matching speed. In order to avoid these drawbacks, this thesis combines the automatic threshold selection with differential pulse transform algorithm and adopts the wavelet transform to transfer a fingerprint signal from the spatial domain to the frequency domain. The magnitudes of the fingerprint energies, which distribute over different frequencies, are taken as fingerprint features for identification or verification, to reduce the computation load in the system.
As for low quality fingerprint images, we join the wavelet transform and Gabor filter to enhance and restore crumbling segments. In addition, we use the registration point and rotation point as auxiliary reference to solve for the problem of frequency characteristic variations induced by fingerprint translation or rotation. With back propagation neural network as classifier, experiment shows that the classification rate can achieve 93% above in our system. The same result can be obtained for the fingerprint images in varied position or with poor quality.
摘要………………………………………………………………i
Abstract…………………………………………………………ii
List of Tables…………………………………………………v
List of Figures……………………………………………….vi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Works 2
1.3 Objectives and Contributions 5
1.4 System Mechanism 6
1.4.1 System Fundamental Operation 7
1.4.2 ID Enrollment and ID Verification Operation 9
1.5 Thesis Organization 10
Chapter 2 Background Knowledge 12
2.1 Overview of Biometric Techniques 12
2.2 Introduction to Fingerprints 17
2.3 Fingerprint Image Acquisition Equipment 21
2.3.1 Optical Sensor 21
2.3.2 Ultrasonic Sensor 23
2.3.3 Solid-State Sensor 24
2.4 Texture Descriptions 27
2.4.1 Estimations of Dominant Local Orientation 28
2.4.2 Flow Orientation Coherence 32
2.5 Wavelet Transform 33
Chapter 3 Fingerprint Registration Point Detection 42
3.1 Image Preprocessing 43
3.1.1 Normalization 44
3.1.2 Fingerprint Enhancement 46
3.1.3 Histogram Equalization 51
3.2 Estimation of Fingerprint Orientation 52
3.3 Background Segmentation 55
3.4 Core Point Detection 57

3.5 Fingerprint Registration Point Determination 60
Chapter 4 Wavelet Features Extraction 63
4.1 Why Wavelet Features 63
4.2 Rotation Invariant Algorithm 65
4.3 Fingerprint Feature Vector 69
4.3.1 Automatic Threshold Selection 70
4.3.2 Differential Pulse Transformation 74
4.3.3 Feature Vector Estimation 75
Chapter 5 Experimental Results 79
5.1 Wavelet Feature Evaluations 79
5.1.1 KNN Classifier 80
5.1.2 BPNN Classifier 83
5.2 Rotation Test 87
5.3 System Performance 89
5.3.1 System Architecture 89
5.3.2 Test on Normal Fingerprint Images 92
5.3.3 Test on Crumbling Fingerprint Images 93
Chapter 6 Conclusions 96
6.1 Conclusions 96
6.2 Future Works 97
References 99
[1]E. Aboufadel and S. Schlicker, Discovering Wavelets, John Wiley & Sons, Inc., 1999.
[2]A. Almansa and T. Lindeberg, “Fingerprint Enhancement by Shape Adaptation of Scale-Space Operators with Automatic Scale Selection,” IEEE Transactions on Image Processing, vol. 9, pp. 2027-2042, Dec. 2000.
[3]M. Ballan, “Directional Fingerprint Processing”, Proceeding of IEEE International Conference on Signal Processing, vol. 2, pp. 1064-1067, Oct. 1998.
[4]M. Ballan, F.A. Sakarya, and B.L. Evans, “A Fingerprint Classification Technique Using Directional Images,” Proceedings of IEEE Conference on Signals, Systems, and Computers, Pacific Grove, California, USA, vol. 1, pp. 101-104, Nov. 1997.
[5]R.H. Bamberger and M.J.T. Smith, “A Filter Bank for the Directional Decomposition of Images: Theory and Design,” IEEE Transactions on Signal Processing, vol. 40, pp. 882-893, April 1992.
[6]W. Bicz, D. Banasiak, P. Bruciak, Z. Gumienny, S. Gumuliñski, D. Kosz, A. Krysiak, W. Kuczyñski, M. Pluta, and G. Rabiej, “Fingerprint structure imaging based on an ultrasound camera,” Instrument Science Technology, vol. 27, pp. 295-303, 1999.
[7]R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, “Fingerprint Classification by Directional Image Partitioning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 5, pp. 402-421, 1999.
[8]Y.T. Chan, Wavelet Basics, Kluwer Academic Publishers, 1995.
[9]J.H. Chang, “Fingerprint Classification by Ridge Distribution Sequences and Ridge Distribution Model,” Ph.D. Dissertation, Department of Computer Science and Information Engineering, National Central University, 2001.
[10]C.L. Chen, “A Study on Efficient Preprocessing and Classification for Fingerprints,” Master Thesis, Department of Computer Science and Information Engineering, TamKang University, 2001.
[11]H.G. Cheng, J. Tian, and T.H. Zhang, “Fingerprint Enhancement with Dyadic Scale-Space,” Proceeding of IEEE International Conference on Pattern Recognition, Quebec, Canada, vol. 1, pp. 200-203, Aug. 2002.
[12]B.H. Cho, J.S. Kim, J.H. Bae, I.G. Bae, and K.Y. Yoo, “Core-based Fingerprint Image Classification,” Proceedings of IEEE Conference on Pattern Recognition, Barcelona, Spain, vol. 2, pp. 863-866, Sept. 2000.
[13]B.H. Cho, J.S. Kim, J.H. Bae, I.G. Bae, and K.Y. Yoo, “Fingerprint Image Classification by Core Analysis,” International Conference on Signal Processing, Beijing, China, vol. 3, pp. 1534-1537, Aug. 2000.
[14]L. Coetzee and E.C. Botha, “Fingerprint Recognition in Low Quality Images,” Pattern Recognition, vol. 26, No. 10, pp. 1441-1460, 1993.
[15]L.C. Ern and G. Sulong, “Fingerprint Classification Approached: An Overview,” International, Symposium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, vol. 1, pp. 347-350, Aug. 2001.
[16]Federal bureau of investigation, “The Science of Fingerprints: Classification and Uses,” U.S.A government printing office, Washington D.C., 1984.
[17]A.P. Fitz and R.J. Green, “Fingerprint Classification using Hexagonal Fast Fourier Transform,” Pattern Recognition, vol. 29, no. 10, 1996.
[18]Fujitsu Inc., “Fingerprint Sensor Solution,” Technical analysis, vol. 20, no. 1, pp. 3-5, 2002.
[19]S. Ghosal, N.K. Ratha, R. Udupa, and S. Pankanti, “Hierarchical Partitioned Least Squares Filter-Bank for Fingerprint Enhancement,” Proceeding of IEEE International Conference on Pattern Recognition, Barcelona, Spain, vol. 3, pp. 334-337, Sept. 2000.
[20]S. Ghosal, R. Udupa, S. Panknti, and N.K. Ratha, “Learning Partitioned Least Squares Filters for Fingerprint Enhancement,” IEEE Workshop on Applications of Computer Vision, Palm Springs, California, pp. 2-7, Dec. 2000.
[21]R.C. Gonzalez and R.E. Woods, Digital Image Processing, second edition, Prentice Hall International Editions, 2002.
[22]S. Greenberg, M. Aladjem, D. Kogan, and I. Dimitrov, “Fingerprint Image Enhancement using Filtering Techniques,” Real-Time Imaging, vol. 8, pp. 227-236, 2002.
[23]R.M. Haralick and L.G. Shapiro, Computer and Robot Vision, volume II, USA, Addison-Wesley Publishing Company, pp. 44-46, 1993.
[24]E.R. Henry, Classification and Use of Fingerprint, London Routledge, 1900.
[25]L. Hong, A. Jain, S. Pankanti, and R. Bolle, “Fingerprint Enhancement,” Proceedings of IEEE Workshop on Applications of Computer Vision, Sarasota, FL, pp. 202-207, Dec. 1996.
[26]L. Hong, Y. Wan, and A. Jain, “Fingerprint Image Enhancement: Algorithm and Performance Evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 777-789, Aug. 1998.
[27]F.J. Hsiao, “Application of 3D Image Reconstruction to Micro-manipulation Systems,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2003.
[28]C.T. Hsieh, E. La, and Y.C. Wang, “An Effective Algorithm for Fingerprint Image Enhancement Based on Wavelet Transform,” Pattern Recognition, vol. 36, No. 2, Dec. 2003.
[29]C.T. Hsieh, Z.Y Lu, T.C. Li, and K.C. Me, “An Effective Method to Extract Fingerprint Singular Point,” The Fourth International Conf ./ Exhibition on High Performance computing in Asia - Pacific Region, Beijing , China, vol. 2, pp. 696–699, May 2000.
[30]A. Jain, R. Bolle, and S. Pankanti, Biometric: Personal Identification in Networked Society, Kluwer, New York, 1999.
[31]A. Jain and F. Farrokhina, “Unsupervised Texture Segmentation using Gabor Filters,” Pattern Recognition, vol. 23, pp. 1167-1186, 1991.
[32]A. Jain, L. Hong, and S. Pankanti, “Biometric Identification,” Communications of the ACM, vol. 43, pp. 91-98, Feb. 2000.
[33]A. Jain, L. Hong, S. Pankanti, and R. Bolle, “An Identity Authentication System Using Fingerprints,” Proceedings of the IEEE, vol. 85, no. 9, pp. 1365-1388, Sept. 1997.
[34]A. Jain, S. Prabhakar, and L. Hong, “A Multichannel Approach to Fingerprint Classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 348-359, April 1999.
[35]T. Kamei and M. Mizoguchi, “Image Filter Design for Fingerprint Enhancement,” Proceedings International Symposium on Computer Vision, Coral Gables, Florida, pp. 109-114, Nov. 1995.
[36]K. Karu and A.K. Jain, “Fingerprint Classification,” Pattern Recognition, vol. 29, no. 3, pp. 389-404, 1996.
[37]M. Kass and A. Witkin, “Analyzing Oriented Patterns,” Computer Vision, Graphics and Image Processing, vol. 37, pp. 362-385, 1987.
[38]M. Kawagoe and A. Tojo, “Fingerprint Pattern Classification,” Pattern Recognition, vol. 17, no. 3, pp. 295-303, 1984.
[39]T. Ko, “Fingerprint Enhancement by Spectral Analysis Techniques,” Proceedings of Applied Imagery Pattern Recognition Workshop, Washington, DC., pp. 133-139, Oct. 2002.
[40]C.J. Lee, “Applications of Gabor Functions on Fingerprint Representation, Enhancement, Verification, and Identification,” Ph.D. Dissertation, Department of Electrical Engineering, National Taiwan University, 2001.
[41]T.H. Lee, “A Real-Time Fingerprint Identification Algorithm,” Master Thesis, Department of Computer Science and Information Engineering, Fu Jen Catholic University, 2002.
[42]W.K. Lee and J.H. Chung, “Fingerprint Recognition Algorithm Development Using Directional Information in Wavelet Transform Domain,” Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1201-1204, June 1997.
[43]C.J. Lee and S.D. Wang, “Fingerprint Feature Extraction Using Gabor Filters,” Electronics Letters, vol. 35, pp. 288 -290, Feb. 1999.
[44]T.W. Lim and M. Moghavvemi, “Capacitive Fingerprint Sensor Chip for Automatic Matching,” Proceedings of IEEE TENCON, Kuala Lumpur, Malaysia, vol. 2, pp. 442-446, Sept. 2000.
[45]C.T. Lin and C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, International Edition, Singapore: Prentice-Hall Pte Ltd, pp. 205-244, 1999.
[46]Y. Liu, S. Yuan, X. Zhu, and Y. Zhang, “A Fingerprint Classification Algorithm Research and Implement,” Conference on Control, Automation, Robotics and Vision, Singapore, vol. 2, pp. 933-937, Dec. 2002.
[47]X.P. Luo and J. Tian, “Knowledge Based Fingerprint Image Enhancement,” Proceeding of IEEE International Conference on Pattern Recognition, Barcelona, Spain, vol. 4, pp. 783-786, Sept. 2000.
[48]S.G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989.
[49]L. O’Gorman, “An Overview of Fingerprint Verification Technologies,” Elsevier Information Security Technical Report, vol. 3, no. 1, 1998.
[50]L. O''Gorman and J.V. Nickerson, “An Approach to Fingerprint Filter Design,” Pattern Recognition, vol. 22, no. 1, pp. 29-38, 1989.
[51]N. Otsu. “A Threshold Selection Method from Gray-level Histograms,” IEEE Transactions on System, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
[52]S. Park, M.J.T. Smith, and J.J. Lee, “Fingerprint Enhancement Based on The Directional Filter Bank,” Proceeding of IEEE International Conference on Image Processing, Vancouver, BC, Canada, vol. 3, pp. 793-796, Sept. 2000.
[53]A.R. Rao, A Taxonomy for Texture Description and Identification, New York, Springer-Verlag, 1990.
[54]C.V.K. Rao and K. Black, “Type Classification of Fingerprints: A Syntactic Approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 3, pp. 223-231, 1980.
[55]N. Ratha, S. Chen, K. Karu, and A. Jain, “A Real-time Matching System for Large Fingerprint Databases,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 799-813, 1996.
[56]N.K. Ratha, J.H. Connell, and R.M. Bolle, “Secure data hiding in wavelet compressed image,” Proceedings of ACM workshops on Multimedia, Los Angeles, California, USA, pp. 127-130, Nov. 2002.
[57]K. Rerkrai and V. Areekul, “A New Reference Point for Fingerprint Recognition,” Proceedings of IEEE International Conference on Image Processing, vol. 2, pp. 499-502, Sept. 2000.
[58]A. Ross, A. Jain, and J. Reisman, “A hybrid fingerprint matcher,” Proceedings of International Conference on Pattern Recognition, Quebec City, vol. 3, pp. 795 -798, Aug. 2002.
[59]A. Rusyn, O. Ostap, V. Ostap, and R. Kosarevych, “Estimation of Singular Points in Fingerprints Images,” Proceedings of the International Conference, pp. 236, Feb. 2002.
[60]B. Rusyn, I. Prudyus, and V. Ostap, “Fingerprint Image Enhancement Algorithm,” Proceedings of IEEE International Conference on The Experience of Designing and Application of CAD Systems in Microelectronics, Lviv-Slavsko, Ukraine, pp. 193-194, Feb. 2001.
[61]W. Shen, X. Chen, and S. Jun, “Robust Detection of Singular Points for Fingerprint Recognition,” IEEE International Symposium on Signal Processing and its Applications, Paris, France, vol. 2, pp. 439-442, July 2003.
[62]B.G. Sherlock, D.M. Monro, and K. Millard, “Fingerprint Enhancement by Directional Fourier Filtering,” Proceedings of IEE Vision, Image, and Signal, vol. 141 ,pp. 87-94, April 1994.
[63]Y.Q. Shi and H. Sun, Image and Video Compression for Multimedia Engineering- Fundamentals, Algorithms, and Standards, USA, CRC Press, pp. 55-72, 2000..
[64]M. Tico, E. Immonen, P. Ramo, P. Kuosmanen, and J. Saarinen, “Fingerprint Recognition Using Wavelet Features,” IEEE International Symposium on Circuits and Systems, Sydney, NSW, Australia, vol. 2, pp. 21-24, May 2001.
[65]M. Tico and P. Kuosmanen, “An Algorithm for Fingerprint Image Postprocessing,” Conference on Signals, Systems, and Computers, Pacific Grove, California, USA, vol. 2, pp. 1735–1739, Nov. 2000.
[66]M. Tico, P. Kuosmanen, and J. Saarinen, “Wavelet Domain Features for Fingerprint Recognition,” Electronics Letter, vol. 37, pp. 21-22, Jan. 2001.
[67]S. Wang, W. Zhang, and Y. Wang, “Fingerprint Classification by Directional Fields,” Proceedings of IEEE International Conference on Multimodal Interface, Pittsburg PA, USA, pp. 395-399, Oct. 2002.
[68]Williams and J. Michael, “Biometrics or … Biohazards,” Proceedings of the 2002 workshop on New security paradigms, Virginia Beach, Virginia, pp. 97-107, Sept. 2002.
[69]Y.F. Wu, “A Fingerprint Identification System,” Master Thesis, Department of Computer Science and Information Engineering, National Tsing Hua University, 2001.
[70]Q. Zhang, K. Huang, and H. Yan, “Fingerprint Classification Based on Extraction and Analysis of Singularities and Pseudoridges,” Conferences in Research and Practice in Information Technology, ACS, Sydney, Australia, pp. 83, 2002.
[71]D.S. Zorita, J.O. Garcia, S.C Llanas, J L.S. Bote, and J.G. Rodriguez, “An Improved Image Enhancement Scheme For Fingerprint Minutiae Extraction In Biometric Identification,” Proceedings of the Third Audio and Video-Based Person Authentication, Halmstad, Sweden, pp. 217-222, June, 2001.
[72]http://bias.csr.unibo.it/research/biolab/bio_tree.html
[73]http://www.biometrics.org
[74]http://www.fs.fed.us/rm/boise
[75]http://www.startek.com.tw
[76]http://www.ultra-scan.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔