跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳雅媚
研究生(外文):Ya-Mei Chen
論文名稱:壓電計算軟體的發展與壓電變壓器的分析
論文名稱(外文):Development of a 3D Finite-Element Solver for Piezoelectric Transformer Analysis
指導教授:楊燿州楊燿州引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:97
中文關鍵詞:負載壓電變壓器有限元素法
外文關鍵詞:finite element methodFEMpiezoelectric transformerloading
相關次數:
  • 被引用被引用:2
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,我們發展一套三次元有限元素法的壓電計算程式NTUPZE,並進行各種不同壓電變壓器的分析與設計。市售的商用有限元素軟體,如ANSYS和ABAQUS,雖具有分析壓電材料的功能,但卻無法將電路負載的效應加以考慮,所以本研究之壓電計算程式,是根據重新推導後之有限元素的駕馭方程式而發展,可以完整考慮各種不同的電路負載。在NTUPZE中,我們採用8個節點的三次元有限元素(8-node brick element),並使用頻譜分析的方式(harmonic analysis),來研究壓電變壓器在不同的頻率之放大率及相位差,並可有效地觀察變壓器中的各種物理場的分佈。本文中所模擬的變壓器的型式包括均佈式(Rosen-type),模態式(modal-type)及單極化圓碟式(unipoled-disk-type)。關於均佈式壓電變壓器的方析,不同大小的負載為了對負載的效應加以討論,首先我們將採用兩種不同的阻尼模型(damping modal)來對均佈式壓電變壓器進行模擬,發現負載效應的加入將有效的驗證第二模態的增益大於第一模態的現象。從中可以觀察到當負載在 及 之間時,共振頻率會有激烈的變化,而當負載在 及 之間時,增益會有激烈的變化。模態式壓電變壓器之模擬的增益及相位差,也與量測的結果相符合。單極化圓碟式壓電變壓器之模擬的頻率響應結果,也驗證了己發表之實驗量測資料。
In this work, we develop a 3-D finite element method (FEM) solver, NTUPZE, for piezoelectric transformer (PT) analyses. Although commercial FEM packages, such as ANSYS and ABAQUS, have the capability of performing piezoelectric analyses, they are not capable of taking electric loading effects into consideration. Therefore, the solver we developed is based on a new finite-element piezoelectric formulation that can account for various types of electric loading conditions. The solver employs the 8-node brick element, and applies the harmonic analysis to study voltage gains and phase difference at different frequencies. Using the NTUPZE, we analyze three different types of piezoelectric transformers: the Rosen-type, the modal-type, and the unipoled-disk-type. In order to discuss the influences of loadings, we adapt two different damping models, the Rayleigh model and the loss tangent model, to simulate a Rosen-type transformer. The simulated results show that the second longitudinal mode has a higher voltage gain than that of the first mode. The resonant frequency changes significantly when the loading is between and ; the voltage gain changes significantly when the loading is between and . Finally, the simulated results of the voltage gains and the phase difference for the modal-type transformers are also verified with the measured results. Also, the simulated frequency responses of the unipoled-disk-type transformers also agree with the measured results published in previous works.
Table of Content
ACKNOWLEDGEMENT 2
CHINESE ABSTRACT 3
ABSTRACT 4
TABLE OF FIGURES 7
LIST OF TABLES 10
CHAPTER 1 INTRODUCTION 11
1.1 BACKGROUND 11
1.2 PREVIOUS WORKS 15
1.3 MOTIVATIONS 16
CHAPTER 2 INTRODUCTION TO FINITE ELEMENT METHOD 17
2.1 GENERAL STEPS OF THE FINITE ELEMENT METHOD 17
2.2 ADVANTAGES OF THE FINITE ELEMENT METHOD 20
CHAPTER 3 EQUATIONS AND FINITE ELEMENT FORMULATION 21
3.1 THE GOVERNING EQUATION 21
3.2 THE FINITE-ELEMENT FORMULATION 26
3.2.1 Relationship between strain and displacement 28
3.2.2 Relationship between electric field and electric potential 34
3.3 THE GLOBAL MATRIX 38
3.4 DYNAMIC CONSIDERATION AND HARMONIC ANALYSIS 38
3.5 PIEZOELECTRIC TRANSFORMER AND LOADING EFFECT 41
3.6 SOLUTION OF FINITE ELEMENT EQUATION 46
CHAPTER 4 THE STRUCTURE OF THE NTUPZE 47
CHAPTER 5 CASE STUDIES 51
5.1 ROSEN-TYPE PIEZOELECTRIC TRANSFORMERS WITHOUT LOADINGS 51
5.2 THE CHARACTERISTICS OF ROSEN-TYPE PIEZOELECTRIC TRANSFORMERS WITH LOADING EFFECT 55
5.3 MODAL-TYPE PIEZOELECTRIC TRANSFORMER 60
5.4 THE UNIPOLED-DISK-TYPE PIEZOELECTRIC TRANSFORMER 68
CHAPTER 6 CONCLUSIONS 82
APPENDIX A NATURAL COORDINATE AND INTERPOLATION FUNCTION 85
A.1 LINEAR HEXAHEDRAL ELEMENT 85
A.2 QUADRATIC HEXAHEDRAL ELEMENT 87
REFERENCES 90
1.C. A. Rosen, Solid State Magnetic and Dielectric Devices, John Wilay & Sons, New York, 1959 1st ed., chap. 5, p.170
2.W. Huang, “Design of a Radial Mode Piezoelectric Transformer for a Charge Pump Electronic Ballast with High Power Factor and Zero Voltage Switching”, Master of Science in Electric Engineering.
3.H. Kawai, Y. Sasaki, T. Inoue, T. Inoi, and S. Takahashi, “Higher Power Transformer Employing Piezoelectric Ceramics”, Jpn. J. Appl. Phys. Vol. 35 (1996) pp. 5015-5017, Part 1, No. 9B, September 1996.
4.T. Futakuchi, H. Sugimori, K. Horii, A. Yanagawa, and M. Adachi, “Preparation of Piezoelectric Ceramic Transformer Operation in Bending Vibration Mode”, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 3596-3599, Part 1, No. 6A, June 1999.
5.J. Yoo, K. Yoon, Y. Lee, S. Suh, J. Kim, and C. Yoo, “Electrical Characteristic of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio”, Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 2680-2684,
6.M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, “Step-Down Piezoelectric Transformer for AC-DC Converters”, Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 2680-2684, Part 1, No. 5B, May 2001.
7.J. H. Hu, H. L. Li, H. L. W. Chan, and C. L. Choy, “A ring-shaped piezoelectric transformer operation in the third symmetric extensional vibration mode”, Sensor and Actuator A 88 (2001) pp. 79-86.
8.J. Yoo, K. Yoon, S. Hwang, S. Suh, J. Kim, and C. Yoo, “Electrical characteristic transformer for 28W fluorescent lamp”, Sensor and Actuator A 90 (2001) pp. 132-137.
9.H. W. Kim, S. Dong, P. Laoratanakul, K. Uchino, and T. G. Park, “Novel Method for Deriving the Ultrasonic Motor”, IEEE Transaction on Ultrasonics and Frequency Control, Vol. 49, No. 10, October 2002.
10.P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled Disk-type Piezoelectric Transformer”, Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 1446-1450.
11.S. Manuspiya, P. Laoratanakul, and K. Uchino, “Integration of a piezoelectric transformer and an ultrasonic motor”, Ultrasonics 41 (2003) pp. 83-87.
12.N. Y. Wong, Y. Zang, H. L. W. Chan, and C. L. Choy, “A bilayer piezoelectric transformer operating in a bending vibration mode”, Material Science and Engineering B99 (2003) pp. 164-167.
13.B. Koc, Y. Gao, and K. Uchino, “Design of a Circular Piezoelectric Transformer with Crescent-Shaped Input Electrodes”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 509-514.
14.T. Endow, and S. Hirose, “Multilayer Piezoelectric Transformer for Small Power Supplies”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 6128-6130.
15.K. Kanayama, N. Maruko, and H. Saigoh, “Development of the Multilayer Alternately Poled Piezoelectric Transformers”, Jpn. J. Appl. Phys. Vol. 37 (1998) pp. 2891-2895.
16.Y. Sasaki, M. Yamamoto, A. Ochi, T. Inoue, and S. Takahashi, “Small Multilayer Piezoelectric Transformer with High Power Density—Characteristic of Second and Third-Mode Reson-Type Transformers—”, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 5598-5602.
17.M. Yamamoto, Y. Shimada, Y. Sasaki, T. Inoue, K. Nakamura, and S. Ueha, “A Multilayer Piezoelectric Transformer Operation in the Third Order Longitudinal Mode and Its Application for an Inverter”, IEICE Trans. Electron., Vol. E85-C, No. 10 October 2002, pp. 1824-1832.
18.Y. H. Hsu, C. K. Lee, and W. H. Hsiao, “Optimizing Piezoelectric Transformer for Maximum Power Transfer”, Smart Mater. Struct. 12 (2003) pp. 373-383.
19.H. Allik and T. J. R. Hughes, “Finite Element Method for Piezoelectric Vibration”, International Journal for Numerical Methods in Engineering, Vol. 2, pp. 151-157(1970).
20.S. D. Gupta, “On Bending of Piezoelectric Multilayer Plates”, IEEE Transactins on Components, Hybrids and Manufacturing Technology, Vol. CHMT-2, No. 4, December 1979, pp.537-540.
21.R. Lerch, “Simulation of Piezoelectric Devices by Two- and Three-Dimension Finite Elements”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.37, NO. 2, May 1990, pp. 233-247.
22.J. Lan, M. J. Simoneau, R. K. Jeffers, and S. G. Boucher, “A Complete Finite Element Model”, 1994 Ultrasonics Symposium, pp. 999-1003.
23.J. Kim, B. Ko, J.-K. Lee, and C.-C. Cheong, “Finite Element Modeling of a Piezoelectric Smart Structure for the Cabin Noise Problem”, Smart Mater. Struct. 8 (1999) pp. 380-389.
24.A. Chattopadhyay, J. Li, and H. Gu, “Coupled Thermo-Piezoelectric-Mechanical Model for Smart Composite Laminates”, AIAA Journal, Vol. 37, No. 12, December 1999, pp. 1633-1638.
25.H. Guo and A. Lal, “Flexural Plate Wave Excitation Using Bulk Modes”, 2001 Ultrasonics Symposium, pp. 799-802.
26.C. M. Landis, “A New finite-element formulation for electromechanical boundary value problems”, International Journal for Numerical Method in Engineering, Int. J. Numer. Meth. Engng 2002;55:613-628.
27.C. –C. Xu, Terri. S. Fiez, and K. Mayaram, “Nonlinear Finite Element Analysis of a Thin Piezoelectric Laminate for Micro Power Generation”, Journal of Microelectromechanical Systems, Vol. 12, No. 5, October 2003.
28.S. Valliappan and K. Qi, “Finite element analysis of a ‘smart’ damper for a seismic structural control”, Computers and Structures 81 (2003) 1009-1017.
29.Y. Kagawa and G. M. L. Gladwell, “Finite element analysis of flexure-type Vibrations with eletrostrictive transducers”, IEEE Transactions on Sonic and ultrasonics, Vol. SU-17, NO. 1, January 1970, pp. 41-49.
30.Y. Kagawa and T. Yamabuchi, “Finite element simulation of a composite piezoelectric ultrasonic transducer”, IEEE Transactions on sonic and ultrasonics, Vol. SU-26, NO. 2, March 1979, pp.81-88.
31.D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the Vibraton Modes for Piezoelectric Array Transducers using a Mixed Finite Element-Perturbation Method”, IEEE Transactions on sonic and ultrasonics, Vol. SU-28, NO. 5, September 1981, pp.318-330.
32.W.-S. Hwang and H. C. Park, “Finite element modeling of a piezoelectric sensor and actuators”, AIAA Journal, Vol. 31, No. 5, May 1993, pp. 930-937.
33.H. S. Tzou and C. I. Tseng, “Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter system : a piezoelectric finite element approach”, Journal of Sound and Vibration (1990) 138(1), pp.17-34.
34.V. V. Varadan, L.-C. Chin, and V. K. Varadan, “Hybrid finite element methods for the numerical simulation of the sensor and actuator performance of composite transducers including the effect of fluid loading”, 1990 Ultrasonics symposium, pp.1177-1181.
35.S. K. Ha, C. Keilers, and F.-K. Chang, “Finite Element Analysis of Composite Structures Containing Distributed Piezoelectric Sensors and Actuators”, AIAA Journal, Vol. 30, No.3 , March 1992, pp. 772-780.
36.M. Asano, T. Matsuoka, H. Okamoto, and T. Matsui, “Study for Micro Mobile Machine with Piezoelectric Deriving Force Actuator”, IEEE International Conference on Robotics and Automation, 1995, pp. 2955-2960.
37.A. Daugela, H. Fujii, C. E. Jeronymo, and A. Misaki, “Piezo Ceramic Based Locomotive Derive”, Six International Symposium on Micro Machine and Human Science, 1995, pp. 187-192.
38.W. Qi and W. Cao, “Finite Element Study on Random Design of 2-2 Composite Transducer”, IEEE, 1996.
39.D. M. Mills and S. W. Smith, “Combining Multi-Layer and Composites to Increase SNR for Medical Ultrasonic Transducers”, 1996 IEEE Ultrasonic Symposium, pp. 1509-1512.
40.S. Alkoy, A. Dogan, A. –C. Hladky, P. Langlet, J. K. Cochran, and R. E. Newnham, “Miniature Piezoelectric Hollow Sphere Transducers (BBs)”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 44, No. 5, September 1997, pp. 1067-1076.
41.G. Wojcik, J. Mould, D. Tennant, R. Richards, H. Song, D. Vaughan, N. Abboud, and D. Powell, “Studies of Broadband PMN Transducer Based on Nonlinear Models”, 1997 IEEE Ultrasonic Symposium, pp. 1051—1056.
42.S. W. Or, H. L. Chan, V. C. Lo, and C. W. Yuen, “Dynamic of an Ultrasonic Transducer Used for Wire Bonding”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 45, No. 6, November 1998, pp.1453-1460.
43.B. Piranda, W. Steichen, and S. Ballandras, “Model Updating Applied to Ultrasound Piezoelectric Transducers”, 1998 IEEE Ultrasonic Symposium, pp. 1057-1060.
44.D. M. Mills and S. W. Smith, “Multi-layer PZT/Polymer Composite to Increase Single to Noise Ratio and Resolution for Medical Ultrasound Transducers”, 1998 IEEE Ultrasonic Symposium, pp. 1873-1876.
45.J. S. Wang and D. F. Ostergaard, “A Finite-Element Circuit Coupled Simulation Method for Piezoelectric Transducer”, 1999 IEEE Ultrasonic Symposium, pp. 1105-1108.
46.D. M. Mills and S. W. Smith, “Multi-Layered PZT/Polymer Composites to Increase Signal-to-Noise Ratio and Resolution for Medical Ultrasound Transducers”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 46, No. 4, July 1999, pp.961-971.
47.R. Simkovics, H. Landes, M. Kaltenbacher, and R. Lerch, “Nonlinear finite element analysis of piezoelectric transducers”, 1999 IEEE Ultrasonic Symposium, pp. 1057-1060.
48.H. Watanabe, “A New Tractile Sensor Using the Edge Mode in a Piezoelectric-Ceramic Bar”, Jpn, J. Appl. Phys. Vol. 40 (2001), pp. 3704-3706, Part 1, No. 5B, May 2001.
49.S. S. Jarng, “Comparison of Barrel-Stave Sonar Transducer Simulation Between a Coupled FE-BEM and ATILA”, IEEE Sensor Journal, Vol. 3, No. 4, August 2003, pp. 439-446.
50.T. Maeno, T. Tsukimoto, and A. Miyake, “Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 39, No. 6, November 1992, pp.668-674.
51.R. Leletty, F. Claeyssen, P. Gonnard, and B. Hamonic, “Combined Finite-Normal Mode Expansion Methods for Ultrasonic Motor Modeling”, 1994 Ultrasonics Symposium, pp. 531-534.
52.S. –H. Jeong, H.- K. Lee, Y. –J. Kim, H.-H. Kim, and K.-J. Lim, “Vibration Analysis of the stator in Ultrasonic Motor by FEM”, Proceeding of the 5th International Conference on Properties and Application of Dielectric Materials, May 25-30, 1997, Seoul, Korea, pp. 1091-1094.
53.S. Dong, S. Wang, W. Shen, and L. Li, “A Miniature Piezoelectric Ultrasonic Motor Based on Circular Bending Vibration Mode”, IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, December 2000, pp. 325-330.
54.Y. Ting, J. –S. Huang, F.-K. Chuang, and C.-C. Li, “Dynamic Analysis and Optimal Design of a Piezoelectric Motor”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 50, No. 6, June 2003, pp.601-613.
55.H. Sato, T. Fukuda, F. Arai, K. Itoigawa, and Y. Tsukshara, “Improvement of Sensing and Actuating Property of Parallel Beam Gyroscope”, 1999 International Symposium Micromechatronics and human science, pp. 249-254.
56.J. Bennett and G. Hayward, “Design of 1-3 Piezocomposite Hydrophones Using Finite Element Analysis”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 44, No. 3, March 1997, pp. 565-574.
57.K. Saitoh, M. Koshiba, and Y. Tsuji, “Numerical Analysis of Integrated Acoustooptic Tunable Filters with Weighted Coupling”, Journal of Lightwave Technology, Vol. 17, No. 2, February 1999.
58.Y. -K. Yong and Z. Zhang, “A Perturbation Method for Finite Element Modeling of Piezoelectric Vibrations in Quartz Plate Resonator”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 40, No. 5, September 2003, pp.551-562.
59.C. Cehin, S. Samper, and Y. Teisseyre, “Mounting Characteristic of a Piezoelectric Resonator using FEM”, 1997 IEEE International Frequency Control Symposium, pp. 630-633.
60.T. Makkonen, A. Holappa, and M. M. Salomaa, “Improvement in 2D FEM Modeling Software for Crystal Resonators”, 1998 IEEE Ultrasonics Symposium pp. 935-938.
61.T. Makkonen, A. Holappa, J. Ella, and M. M. Salomaa, “Finite Element Simulation of Thin-Film Composite BAW Resonators”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 48, No. 5, September 2001, pp. 1241-1258.
62.T. Ishikawa, H. Abe, and H. Watanabe, “Vibration Analysis of Thickness-Shear-Mode Trapped-Energy Resonators Excited by Parallel Electric Field”, Jpn. J. Appl. Phys. Vol. 40 (2001), pp. 3643-3645, Part 1, No. 5B, May 2001.
63.K. Hasegawa and M. Koshiba, “Finite-Element Solution of Rayleigh-Wave Scattering from Reflection Gratings on Piezoelectric Substrate”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 37, No. 2, March 2001, pp. 99-105.
64.G. G. Yaralioglu, F. L. Degertekin, M. H. Badi, B. A. Auld, and B. T. Khuri-Yakub, “Finite Element Method and Normal Mode Modeling of Capactive MicroMachined SAW and Lamb Wave Transducers”, 2000 IEEE Ultrasonics Symposium, pp.129-132.
65.M. Hofer, N. Finger, G. Kovacs, J. Schoberl, U. Langer, and R. Lerch, “Finite Element Simulation of Bulk- and Surface Acoustic Wave (SAW) Interaction in SAW Device”, 2002 IEEE Ultrasonics Symposium, pp.53-56.
66.W. Zhang, L. Y. Shi, and Z. H. Wu, “Good Resonance Operating stabilities of piezoelectric SAW Device Structures using special perturbed multi-variable thermo-electricmechanical finite element”, 2002 IEEE International Frequency Control Symposium and PDA Exhibition, pp. 78-84.
67.B. Piranda, S. Ballandras, W. Steichen, and B. Hecart, “A Model-Updating Procedure to Simulation Piezoelectric Transdures Accurately”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 48, No. 5, September 2001, pp. 1321-1331.
68.A. Barzegar, D. Damjanovic, and N. Setter, “Study of Size (Aspect Ratio) Effect on Longitudinal Piezoelectric Coefficient Measured by Quasistatic Technique”, 2002 IEEE Ultrasonics Symposium, pp. 1185-1188.
69.C. –H. Lee, H. –W. Joo, J. –S. Rho, H. –S. Cho, and H. –K. Jung, “Inversion of Piezoelectric Material Coefficients by Using Finite Element with Asymptotic Wavefrom Evaluation”, 2002 Ultasonics Symposium, pp. 661-664.
70.Y. Jin, C. F. Foo, and W. G. Zhu, “Three-Dimensional Simulation of Piezoelectric Transformer for the Switching Power Supply”, Industrial Electronics Society, 1999. IECON ''99 Proceedings. The 25th Annual Conference of the IEEE, Vol. 1, 29 Nov.-3 Dec. 1999, Pages:295 - 299 vol.1.
71.J. H. Hu, H. L. Li, H. L. W. Chan, and C. L. Choy, “A ring-shaped piezoelectric transformer operating third symmetric extensional vibration mode”, Sensors and Actuators A88 (2001), pp. 79-86.
72.M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, “Step-Down Piezoelectric Transformer for AC-DC Conventers”, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 3637-3642, Part 1, No. 5B, May 2001.
73.H. L. Li, J. H. Hu, and H. L. W. Chan, “Finite Element Analysis on Piezoelectric Transformer”, 2002 IEEE Ultrasonics Symposium, pp. 1177-1180.
74.B. Koc, Y. Gao, and K. Uchino, “Design of a Circular Piezoelectric Transformer with Crescent-Shape Input Electrodes”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 509-514, Part 1, No. 2A, February 2003.
75.T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, “Finite Element Simulation of Piezoelectric Transformers”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, July 2001.
76.J. N. Reddy, Finite Element Method, Second edition, McGraw-Hill, 1993.
77.D. Royer and E. Dieulesaint, Elastic Waves in Solid I –Free and Guided Propagation, Springer, 2000.
78.H. S. Tzou and C. I. Tseng, “Distribution Piezoelectric Sensor/Actuator Design For Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach,” Journal of Sound and Vibration, vol. 138, n.1, p.p. 17-34, 1990.
79.H. Allik and T. J.R. Hughes, “Finite Element Method For Piezoelectric Vibration,” International Journal For Numerical Methods In Engineering, vol.2, p.p151-157.
80.V. Piefort, “Finite Element Modelling of Piezoelectric Active Structures”, P. H. D. Dissertation, Active Structures Laboratory Department of Mechanical Engineering and Robotics, Universit´e Libre de Bruxelles, 2001.
81.O. C. Zienkiewicz, The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977.
82.D. L. Logan, A First Course In The Finite Element Method, Second Edition, PWS-Kent Publishing Company, Boston , 1992.
83.T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in Engineering, Third Edition, Prentice Hill, Upper Saddle River, 2002
84.K.-J. Bathe, Finite Element Procedures, Prentice-Hill, Inc, 1996.
85.I. Horton, Beginning Visual C++ 6, Wrox Press, 1998.
86.I. Horton, Beginning C++ : The Complete Language, Wrox Press, 1998.
87.I. H. Shames and C. L. Dym, Energy and Finite Element Methods in Structural Mechanics, Hemisphere Publishing Corporation, New York, 1985.
88.W. H. Hsiao, “Theory and Experiments of Innovative Piezoelectric Transformer/Converters: Application of Pseudo Actuator and Wave Propagation Concepts”, M. S. Dissertation, Institute of Applied Mechanics, National Taiwan University, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top