(3.236.214.19) 您好!臺灣時間:2021/05/10 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方意慬
研究生(外文):Yi-Chin Fang
論文名稱:微管中由振盪式電滲透流引發之質傳與溶質分離
論文名稱(外文):The Longitudinal Dispersion and Separation of Species in an Oscillating Electroosmotic Flow in Micropipettes
指導教授:賴君亮
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:138
中文關鍵詞:電雙層振盪式電滲透流質傳泰勒傳遞溶質分離
外文關鍵詞:oscillatingelectrical double layer(EDL)Taylor dispersionseparationtime periodicelectroosmotic flow(EOF)mass transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

隨著微機電技術日益地成熟,過去十年來微型化的趨勢與潛力受到科學家與工程師的重視,許多在傳統實驗室中需多個步驟分開的實驗,可以被濃縮在一微晶片中一次處理完成,因而可應用在化學反應實驗、不同物種的混合與分離、生物檢測、醫學臨床測試與環境控制等方面。架構在如此微小的尺寸上,本文探討在一注滿電解質與鈍性物種的微管中,當溶液受到一振盪式電滲透流驅動後,其鈍性物種的質傳與溶質分離的物理現象。
儘管過去五十年來,已經有許多研究探討微管表面的電雙層現象(EDL)、電滲透流的特性(EOF)以及泰勒傳遞現象(Taylor Dispersion)現象,然而本文所討論振盪式電滲透流與泰勒傳遞現象的結合則尚未有文獻發表,因此本研究不僅在晶片設計上具有參考價值,在學術上也具有相當地挑戰性與重要性。
文中複變函數被使用來計算出速度場、濃度場與質傳速率的解析解。結果顯示,質傳速率的增加會先隨無因次化頻率增加而後減少,這樣的變化與三個時間常數間的關係、以及統御方程式中的三個特徵值有關。此外,Schmidt數、電雙層的厚度、雷諾數(Reynolds Number)、微管表面的電位、與外加電場的強度對質傳速率增加的影響,也都在本文中有系統地加以探討。結果發現在頻率低的狀態下,兩種不同的鈍性物質其傳遞速度相差較多,因此在此範圍內,此流場可被用來分離不同種的物質。本研究因而可被應用在分離DNA或其他有機物質的生物晶片內。
ABSTRACT

Over the last decade, the potential of micro-miniaturization of analytical procedures has been explored with the maturity of MEMS technology. Several sequential experiments steps are integrated into a single automated process. These microfluid chips can be applied to perform chemical reactions, mixing and separations, biological detections, medical testing, and environmental monitoring, etc. The present study is aimed at investigatory theoretically the mass transfer and separation driven by an electroosmotic flow (EOF) in a micropipette.
Many researches about electrical double layer (EDL), EOF and Taylor dispersion have been published over the past five decades. However, the combination of a time periodic EOF and the phenomenon of Taylor dispersion is first investigated systematically in the present study.
A complex variable approach is used to solve analytically the solutions of the velocity profile, the concentration distribution, and the mass flow rate. The results show that the enhancement of mass transport rate, , arises first and then decendes with the increase of the frequency of the electrical field applied. Parametric studies uncovered that three time constants, , , and together with the three eiganvalues in the governing equations , , and play significant roles in the process of mass transfer. The effects of Schmidt number, , the thickness of EDL, , Reynolds number, , the electrical potential on the surface of the micropipette, , and the intensity of the applied electrical field, on are systematically analyzed and discussed. It is also shown that at low frequency the oscillating EOF is conducive to the separation of species.
CONTENTS

致謝 i
摘要 ii
Abstract iii
Contents iv
Captions of Figures vi
Notations xi

Chapter 1 Introduction 1
1-1 Fundamental Physics 1
1-2 Motivation and Objectives 5
1-3 Background and Literature Review 6
1-4 Physical Models 9

Chapter 2 Assumptions and Formulation 11
2-1 Assumptions 11
2-2 Flow Charts 12
2-3 The Electrical Field 18
2-4 The Velocity Field 19
2-5 The Concentration Field of a Neutral Species 20
2-6 Volume Flow Rate and Mass Flow Rate 21

Chapter 3 Dimensional Analysis
and Analytical Solutions 22
3-1 Nondimensionalization 22
3-1.1 Governing Equations
and Boundary Conditions 22
3-1.2 Volume Flow Rate and Mass Flow Rate 27
3-2 Some Definitions for Simplification 28
3-3 The Electrical Potential 32
3-4 The Velocity Profile 33
3-5 The Concentration Distribution 36
3-6 Solution of Volume Flow Rate 43
3-7 Solution of Mass Flux 44
3-8 Solution of Mass Flow Rate 50

Chapter 4 Results and Parametric Discussions 56
4-1 Variations of The Velocity Profiles
and The Concentration Distributions 57
4-2 Schmidt Number and Separations 58
4-3 Effects due to , , , and 58

Chapter 5 Conclusions and Future Work 60
5-1 Conclusions 60
5-2 Future Work 60

Appendix A 61
A-1 Guoy-Chapman Theory 61
A-2 Guoy-Chapman-Stern Theory 62
A-3 Zeta Potential 64
A-4 Electrokinetic Effects 65
A-5 Helmholtz-Smoluchowski Equation 67

Appendix B 68
B-1 Nernst-Einstein Equation 68
B-2 Nernst-Planck Equation 69
B-3 Boltzmann Distribution 70
B-4 Poisson’s Equation 72
B-5 Poisson-Boltzmann Distribution 73
B-6 Debye-Hückle Approximation 74
B-7 Fick’s Law 76

Appendix C 78
C-1 Complex Variable Method 78
C-2 List of Some Formulae of Bessel Functions
and Modified Bessel Functions 79
C-3 Some Definitions for Simplification 80
References 87
Figures 91
Reference

[1] J. Young, “Lab On A Chip,” Forbes, Vol. 158, No. 7, pp. 210-211, 1996
[2] M. Kuschel, “Lab-On-A-Chip Technology - Applications for The Life Sciences,” Biofarm, Vol. 14, No. 8, pp. 50-52, 2001
[3] G. Ondrey, “The ''Lab-On-A-Chip'' Isn''t Science Fiction Anymore,” Chem. Eng., Vol. 104, No. 4, pp. 48-&, 1997
[4] J. G. E. Gardeniers, A. van den Berg, “Lab-On-A-Chip Systems for Biomedical and Environmental Monitoring,” Fresenius'' J. Anal. Chem., Vol. 378, No. 7, pp. 1700-1703, 2004
[5] U. J. Krull, “Special Issue: Microfluidics and Lab-On-A-Chip – Foreword,” Anal. Chim. Acta, Vol. 507, No. 1, pp. 1-1, 2004
[6] R. J. Hunter, “Zeta Potential in Colloid Science: Principles and Applications,” London ; New York : Academic Press, 1981
[7] R. F. Probstein, “Physicochemical Hydrodynamics: an Introduction, 2nd ed.,” New York : John Wiley & Sons, 1994
[8] J. S. Newman, “Electrochemical System, 2nd ed.,” Englewood Cliffs, N. J. : Prentice Hall, 1991
[9] M. J. Clifton, “Numerical-Simulation of Protein Separation by Continuous-Flow Electrophoresis,” Electrophoresis, Vol. 14, No. 12, pp. 1284-1291, 1993
[10] L. Hu, J. D. Harrison, and J. H. Masliyah, “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” J. Colloid Interface Sci., Vol. 215, No. 2, pp. 300-312, 1999
[11] G. I. Taylor,” Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube,” Proc. R. Soc. London, Ser. A, Vol. 219, pp. 186-203, 1953
[12] G. I. Taylor,” The Dispersion of Matter in Turbulent Flow Through a Pipe,” Proc. R. Soc. London, Ser. A, Vol. 223, pp. 446-468, 1954
[13] G. I. Taylor,” Conditions Under Which Dispersion of a Solute in a Stream of Solvent Can be Used to Measure Molecular Diffusion,” Proc. R. Soc. London, Ser. A, Vol. 223, pp. 473-477, 1954
[14] R. Aris, “On The Dispersion of Solute in a Fluid Flowing Through a Tube,” Proc. R. Soc. London, Ser. A, Vol. 235, pp. 67-77, 1956
[15] W. H. Lim, H. M. Jang, S. M. Ha, Y. G. Chai, S. I. Yoo, and B. T. Zhang, “A Lab-On-A-Chip Module for Bead Separation in DNA-Based Concept Learning,” DNA computing : 9th International Workshop on DNA Based Computers, Vol. 2943, pp. 1-9, 2004
[16] M. Krishnan, V. Namasivayam, R. S. Lin, R. Pal, and M. A. Burns, “Microfabricated Reaction and Separation Systems,” Current Opinion in Biotechnology , Vol. 12, No. 1, pp. 92-98, 2001
[17] A. K. Jain and R. K. Srivastava, “Ab-Initio Studies on Electroosmotic Separation: Separation of 1,4-Dioxane in Water Solution,” J. Membr. Sci., Vol. 112, No. 1, pp. 41-46, 1996
[18] J. C. T. Eijkel, A. van den Berg, A. Manz, “Cyclic Electrophoretic and Chromatographic Separation Methods,” Electrophoresis, Vol. 25, No. 2, pp. 243-252, 2004
[19] K. D. Bartle and P. Myers, “Theory of Capillary Electrochromatograpy,” Journal of Chromatography. A, Vol. 916, No. 1-2, pp. 3-23, 2001
[20] G. M. Mala, D. Li, and J. D. Dale, “Heat Transfer and Fluid Flow in Microchannels,” Int. J. Heat Transfer, Vol. 40, No. 13, pp. 3079-3008, 1997
[21] G. M. Mala, D. Li, C. Werner, H. J. Jacobasch, Y. B. Ning, “Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates with Electrokinetic Effects,” Int. J. Heat and Fluid Flow, Vol. 18, No. 5, pp. 489-496, 1997
[22] C. Yang, D. Li, and J. H. Masliyah, “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,” Int. J. Heat Mass Transfer, Vol. 41, No. 24, pp. 4229-4249, 1998
[23] R. J. Yang, L. M. Fu, and Y. C. Lin, “Electroosmotic Flow in Microchannels,” J. Colloid Interface Sci., Vol. 239, No. 1, pp. 98-105, 2001
[24] R. J. Yang, L. M. Fu, and C. C. Hwang, “Electroosmotic Entry Flow in a Microchannel,” J. Colloid Interface Sci., Vol. 244, No 1, pp. 173-179, 2001
[25] J. G. Santiago, “Electroosmotic Flows in Microchannels with Finite Inertial and Pressure Forces,” Anal. Chem., Vol. 73, No. 10, pp. 2353-2365, 2001
[26] A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismaglilov, and G. M. Whitesides, “Patterning Electro-osmotic Flow with Patterned Surface Charge,” Phys. Rev. Lett., Vol. 84, No. 15, pp. 3314-3317, 2000
[27] L. Ren and D. Li, “Electroosmotic Flow in Heterogeneous Microchannels,” J. Colloid Interface Sci., Vol. 243, No. 1, pp. 255-261, 2001
[28] L. Ren, C. Escobedo, and D. Li, “Electroosmotic Flow in a Microcapillary with One Solution Displacing Another Solution,” J. Colloid Interface Sci., Vol. 242, No. 1, pp. 264-271, 2001
[29] D. Erickson and D. Li, “Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing,” Langmuir, Vol. 18, No. 5, pp. 1883-1892, 2002
[30] J. P. Gleeson, “Electroosmotic Flows with Random Zeta Potential,” J. Colloid Interface Sci., Vol. 249, No. 1, pp. 217-226, 2002
[31] O. Söderman and B. Jönsson, “Electro-osmosis Velocity Profiles in Different Geometries with Both Temporal and Spatial Resolution,” J. Chem. Phys., Vol. 105, No. 23, pp. 10300-10311, 1996
[32] N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, “Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes I. Experimental Measurements,” Physical Review E, Vol. 61, No. 4, pp. 4011-4018, Part B, 2000
[33] A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, “Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes II. A Linear Double-Layer Analysis,” Physical Review E, Vol. 61, No. 4, pp. 4019-4028, Part B, 2000
[34] P. Dutta, and A. Beskok, “Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes'' Second Problem,” Anal. Chem., Vol. 73, No. 21, pp. 5097-5102, 2001
[35] D. Erickson and D. Li, “Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel,” Langmuir, Vol. 19, No. 13, pp. 5421-5430, 2003
[36] A. Bhattacharyya and J. H. Masliyah, and J. Yang, “Oscillating Laminar Electrokinetic Flow in Infinitely Extended Circular Microchannels,” J. Colloid Interface Sci., Vol. 261, No. 1, pp. 12-20, 2003
[37] A. R. Mansour, “Dispersion of Solute in Laminar – Flow Through a Circular Tube,” Sep. Sci.Technol., Vol. 24, No. 15, pp. 1437-1442, 1989
[38] M. Martin and G. Guiochon, “Axial Dispersion in Open-Tubular Capillary Liquid Chromatography with Electroosmotic Flow,” Anal. Chem., Vol. 56, No.4, pp. 614-620, 1984
[39] J. P. McEldoon and R. Datta, “Analytical Solution for Dispersion in Capillary Liquid Chromatography with Electroosmotic Flow,” Anal. Chem., Vol. 64, No.2, pp. 227-230, 1992
[40] S. K. Griffiths and R. H. Nilson, “Hydrodynamic Dispersion of a Neutral Nonreacting Solute in Electroosmotic Flow,” Anal. Chem., Vol. 71, No.24, pp. 5522-5529, 1999
[41] S. K. Griffiths and R. H. Nilson, “Electroosmotic Fluid Motion and Late-Time Solute Transport for Large Zeta Potentials,” Anal. Chem., Vol. 72, No.20, pp. 4767-4777, 2000
[42] H. Harris and S. Goren, ” Axial Diffusion in a Cylinder with Pulsed Flow,” Chem. Eng. Sci., Vol. 22, pp. 1571-1576, 1967
[43] R. G. Rice and L. C. Eagleton, “Mass Transfer Produced by Laminar Flow Oscillations,” Can. J. Chem. Eng., Vol. 48, pp. 46-51,1970
[44] P. C. Chatwin, “On The Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes,” J. Fluid Mech., part3, Vol. 71, pp. 513-527, 1975
[45] E. J. Watson, “Diffusion in Oscillatory Pipe Flow,” J. Fluid Mech., Vol. 133, pp. 233-244, 1983
[46] P. E. Hydon and T. J. Pedley, “Axial –Dispersion in a Channel with Oscillating Walls,” J. Fluid Mech., Vol. 249, pp. 535-555, 1993
[47] U. H. Kurzweg and M. J. Jaeger, “Diffusional Separation of Gases by Sinusoidal Oscillations,” Phys. Fluids, Vol. 30, No.4, pp. 1023-1025, 1987
[48] U. H. Kurzweg, “Enhanced Diffusional Separation in Liquids by Sinusoidal Oscillations,” Sep. Sci.Technol., Vol. 23, No.1-3, pp. 105-117,1988
[49] M. J. Jaeger, P. Kalle, and U. H. Kurzweg, “Separation of Gases by Enhanced Upstream Diffusion,” Sep. Sci.Technol., Vol. 27, No. 6, pp. 691-702,1992
[50] M. J. Jaeger, “The Enrichment of the Heavier of Two Gases Isotopes by Enhanced Diffusion (example H2^2/H2^1),” Sep. Sci.Technol., Vol. 31, No. 6, pp. 811-827, 1996
[51] M. J. Jaeger, “The Enrichment of the Lighter of Two Gases by Enhanced Diffusion (example He/N2),” Sep. Sci.Technol., Vol. 31, No. 7, pp. 987-992,1996
[52] J. G. Zhang , W. C. Zegel, and U. H. Kurzweg, “Enhanced Axial Dispersion in Oscillating Pipe Flow with Different Solute Concentrations at Its Ends,” J. Fluid Eng., Vol. 118, No. 1, pp. 160-165, 1996
[53] A. M. Thomas and R. Narayanan, “Physics of OscillatoryFlow and Its Effect on The Mass Transfer and Separation of Species,” Physics of Fluids, Vol. 13, No. 4, pp. 859-866, 2001
[54] A. M. Thomas and R. Narayanan, “A Comparison Between The Enhanced Mass Transfer in Boundary and Pressure Driven Oscillatory Flow,” Int. J. Heat Mass Transfer, Vol. 45, No. 19, pp. 4057-4062, 2002
[55] S. Uchida, “The Pulsating Viscous Flow on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe,” ZAMP, pp. 403, 1950
[56] D. K. Cheng, “Field and Wave Electromagnetics, 2nd ed.,” Reading, Mass. : Addison-Wesley Pub. Co., 1989
[57] Ph. W. M. Rutten, “Diffusion in Liquids,” Delft : Delft University Press, 1992
[58] Bateman Manuscript Project, “Higher Transcendental Functions,” New York : McGraw-Hill, 1953-55
[59] N.W. McLachlan, “Bessel Functions for Engineers,” London, Geoffrey Cumberlege, Oxford Univ. press, 1948
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔