(3.236.214.19) 您好!臺灣時間:2021/05/09 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王湧鋒
研究生(外文):Yeong-Feng Wang
論文名稱:奈米直寫儀光學頭之奈米壓印製作方法的先導性研究
論文名稱(外文):Study of Nanoimprint Fabrication Method for Nanowriter Optical Head
指導教授:吳光鐘
指導教授(外文):Kuang-Chong Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:91
中文關鍵詞:奈米壓印微影奈米直寫儀
外文關鍵詞:nanoimprint lithographynanowriter
相關次數:
  • 被引用被引用:8
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之目的在於運用奈米壓印微影技術實現奈米直寫儀的光學頭製作。奈米直寫儀採用通過次波長週期性結構所造成異常光學穿透與指向性現象的光學頭,產生非透鏡方式傳播之奈米聚焦光束,以建構具有高穿透能量且光束發散角度小的曝光設備,有效提升系統的解析度。鑒於傳統製程之成本甚高,本研究選擇高輸出、低成本的奈米壓印微影製作奈米直寫儀之光學頭,以祈能提供另種相對便宜的奈米結構製作方法。
模具製作之良窳筱關奈米壓印微影成果之品質,本研究使用電子束直寫儀定義奈米圖案,再操作電感耦合電漿蝕刻機將結構轉移至三吋矽晶圓,最後成它a使用熱壓成型機壓印三吋晶圓範圍的奈米圖形陣列。舉凡電子束微影設計圖案之概念及曝光顯影的參數選用、電感耦合電漿蝕刻所遭遇問題探討、依據材料性質搭配熱壓設備調整壓印時之狀態等,皆於文中依序討論。
The objective of this thesis is on the fabrication of optical heads for nanowriters using nanoimprint lithography. Nanowriters focus light by sub-wavelength periodic structures, in which extraordinary optical transmission and directional beaming phenomena occur. The phenomena exhibit high energy transmission and small divergence angle so that nanometer light beams can be induced without using optical lens. Consequently nanowriters can provide better exposure resolution than conventional laser writers. Because the cost for optical heads is high with conventional fabrication methods, nanoimprint lithography, a high-throughput, low-cost method, is chosen to make nanowriter optical heads. Let is hoped that such a fabrication process can provider an economical alternative for mass production of optical head.
The quality of a mold greatly affects the results of nanoimprint lithography. This work uses e-beam writer to define nano-patterns and then manipulates ICP to transfer structures to 3-inch silicon wafers. Finally hot embossing machine is utilized to imprint nano-pattern arrays on 3-inch wafer. The related details are discussed in this work. The discussions include: some conception of e-beam lithography patterning design and parameters of exposure and develop, the problems during ICP etching, adjusting imprint status by material properties and hot embossing equipment.
目錄
誌謝 ……………………………………………………………………Ⅰ
中文摘要 ………………………………………………………………Ⅲ
英文摘要 ………………………………………………………………Ⅳ
目錄 ……………………………………………………………………Ⅴ
圖目錄 …………………………………………………………………Ⅶ
表目錄 …………………………………………………………………Ⅸ
第一章 緒論 …………………………………………………………1
1.1 研究動機 …………………………………………………………1
1.2 科技競爭 …………………………………………………………3
1.3 未來發展 …………………………………………………………8
第二章 文獻回顧及原理 ……………………………………………9
2.1 奈米壓印微影 ……………………………………………………9
2.2 蝕刻 ………………………………………………………………13
2.3 異常的光學穿透 …………………………………………………20
第三章 實驗方法及流程 ……………………………………………27
3.1 光學頭設計 ………………………………………………………27
3.2 電子束微影 ………………………………………………………30
3.2.1 設計元件 ………………………………………………………30
3.2.2 光阻塗佈 ………………………………………………………31
3.2.3 電子束曝光 ……………………………………………………32
3.2.4 顯影 ……………………………………………………………34
3.3 圖形轉移 …………………………………………………………39
3.4 奈米壓印微影 ……………………………………………………47
第四章 實驗結果與分析 ……………………………………………53
4.1 電子束微影 ………………………………………………………53
4.2 圖形轉移 …………………………………………………………60
4.3 奈米壓印微影 ……………………………………………………68
第五章 結論與未來展望 ……………………………………………71
5.1 改良方式 …………………………………………………………71
5.2 結論 ………………………………………………………………73
5.3 未來展望 …………………………………………………………75
參考文獻 ………………………………………………………………81

圖目錄
圖1.1 光源波長趨勢與LSI最小特徵尺寸比較圖 …………………6
圖1.2 Intel 微影技術發展藍圖……………………………………6
圖1.3 次波長微影技術發展趨勢圖…………………………………7
圖1.4 2003年 ITRS 對微影技術的預測……………………………7
圖1.5 光學微影設備價格趨勢圖……………………………………8
圖2.1 奈米壓印微影與步進快閃式壓印微影比較圖………………12
圖2.2 等向性、非等向性蝕刻示意圖………………………………16
圖2.3 氣體比例與偏壓對乾蝕刻的影響……………………………16
圖2.4 STS電感耦合電漿蝕刻機製程腔體架構 ……………………19
圖2.5 STS電感耦合電漿蝕刻機製程參數對蝕刻速率影響 ………19
圖2.6 表面電漿電場分佈示意圖……………………………………26
圖2.7 使用光柵耦合表面電漿的架構………………………………26
圖3.1 以GSolver分析入射光進入光學頭後遠場時的傳播角度 …29
圖3.2 以OptiFDTD模擬近場之光強分佈……………………………29
圖3.3 ELS-7500EX 電子束微影設備操作流程示意圖 ……………36
圖3.4 電子束微影之近接效應示意圖………………………………36
圖3.5 旋轉塗佈光阻使用參數………………………………………37
圖3.6 電子束掃描方式示意圖………………………………………37
圖3.7 電感耦合電漿蝕刻機操作介面………………………………45
圖3.8 Bosch process深蝕刻示意圖 ………………………………45
圖3.9 以不同解析度之設備觀察相同蝕刻條件的結果……………46
圖3.10 奈米壓印微影設備……………………………………………50
圖4.1 以電子束直寫儀刻寫光柵……………………………………57
圖4.2 以電子束直寫儀刻寫同心圓…………………………………58
圖4.3 ECA參數設定與操作介面圖 …………………………………59
圖4.4 ICP蝕刻參數與設定介面 ……………………………………62
圖4.5 以SEM觀察ICP蝕刻成果改進歷程……………………………63
圖4.6 以SEM觀察ICP蝕刻成果剖面圖Ⅰ……………………………64
圖4.7 以SEM觀察ICP蝕刻成果剖面圖Ⅱ……………………………65
圖4.8 以SEM觀察ICP蝕刻成果剖面圖Ⅲ……………………………66
圖4.9 以SEM觀察ICP蝕刻成果剖面圖Ⅳ……………………………67
圖4.10 以原子力顯微鏡觀察奈米壓印微影成果……………………70
圖5.1 三維模具製程示意圖…………………………………………77
圖5.2 應用三維模具量產奈米直寫儀光學頭示意圖………………78
圖5.3 雙面對稱結構之光學頭製程示意圖…………………………79
圖5.4 懸臂結構製程示意圖…………………………………………80

表目錄
表3.1 ELS-7500EX曝光效能技術規格表……………………………38
表3.2 奈米壓印微影相關參數整理…………………………………51
[1]T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, Vol. 391, pp. 667-669, February 12, 1998.
[2]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen. , ”Beaming light from a subwavelength aperture,” Science, Vol. 297, pp. 820-822, August 2, 2002.
[3]W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, Vol. 424, pp. 824-830, 2003.
[4]余良彬,指向性傳遞之表面電漿繞射理論、數值模擬與實驗,國立台灣大學應用力學研究所博士論文,中華民國九十二年十二月。
[5]林鼎晸,用於奈米雷射直寫儀之浪型次波長結構之模擬與研製,國立台灣大學應用力學研究所碩士論文,中華民國九十二年七月。
[6]Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, Number 8, April 19, 1965.
[7]Takashi Ito, Shinji Okazaki, “Pushing the limits of lithography,” Nature, Vol. 406, August 31, 2000.
[8]“The Intel Lithography Roadmap,” Intel Technology Journal, Volume 06, Issue 02, ISSN 1535766, May 16, 2002.
[9]M. D. Levinson, N. Viswanathan, R. Simpson, “Improving Resolution in Photolithography with a Phase-Shifting Mask,” IEEE Transaction on Electron Devices, Vol. 29, No. 12, pp. 1812-1846, 1982.
[10]“Lithography,” The International Technology Roadmap for Semiconductors 2003 Edition.
[11]S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters, Vol. 67 (21), pp. 3114-3116, November 20, 1995.
[12]C. M. Sotomayor Torres, Alternative lithography - Unleashing the potentials of nanotechnology, ISBN 0306478587, 2003.
[13]S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, Vol. 272, pp. 85-87, April 5, 1996.
[14]S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Society and Technology B, Vol. 14, pp. 4129-4133, 1996.
[15]S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, L. Zhuang, “Sub-10 nm imprint lithography and applications,” Journal of Vacuum Society and Technology B, Vol. 15, pp. 2897-2904, 1997.
[16]L. Guo, P. R. Krauss, S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography,” Applied Physics Letters, Vol. 71, pp. 1881-1883, September 29, 1997.
[17]P. R. Krauss, S. Y. Chou, “Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe,” Applied Physics Letters, Vol. 71, pp. 3174-3176, November 24, 1997.
[18]W. Wu, B. Cui, X. Sun, W. Zhang, L. Zhuang, L. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” Journal of Vacuum Society and Technology B, Vol. 16, pp. 3825-3829, 1998.
[19]X. Sun, L. Zhuang, W. Zhang, S. Y. Chou, “Multilayer resist methods for nanoimprint lithography on nonflat surfaces,” Journal of Vacuum Society and Technology B, Vol. 16, pp. 3922-3925, 1998.
[20]H. Tan, A. Gilbertson, S. Y. Chou, “Roller nanoimprint lithography,” Journal of Vacuum Society and Technology B, Vol. 16, pp. 3926-3928, 1998.
[21]Z. Yu, S. J. Schablitsky, S. Y. Chou, “Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography,” Applied Physics Letters, Vol. 74, pp. 2381-2383, April 19, 1999.
[22]J. Wang, X. Sun, L. Chen, S. Y. Chou, “Direct nanoimprint of submicron organic light-emitting structures,” Applied Physics Letters, Vol. 75, pp. 2767-2769, November 1, 1999.
[23]B. Cui, W. Wu, L. Kong, X. Sun, S. Y. Chou, ” Perpendicular quantized magnetic disks with 45 Gbits on a 4 X 4 cm2 area,” Journal of Applied Physics, Vol. 85, pp. 5534-5536, April 15, 1999.
[24]P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” Journal of Vacuum Society and Technology B, Vol. 17, pp. 2965-2969, 1999.
[25]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Step and flash imprint lithography: a new approach to high resolution patterning,” Proceedings of SPIE, Vol. 3676, pp. 379-391, 1999.
[26]M. Colburn, T. Bailey, B. J. Choi, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, “Development and advantages of step and flash imprint lithography,” Solid State Technology, Vol. 46, pp. 67-76, 2001.
[27]T. C. Bailey, S. C. Johnson, D. J. Resnick, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Step and flash imprint lithography: an efficient nanoscale printing technology,” Journal of Photopolymer Science and Technology, Vol. 15 (3): 481, 2002.
[28]B. J. Choi, S. Johnson, S. V. Sreenivasan, M. Colburn, T. Bailey, C. G. Willson, “Partially constrained compliant stages for high resolution imprint lithography,” Proceedings of ASME DETC2000, Vol. 7B: 861, 2000.
[29]M. Colburn, A. Grot, B. J. Choi, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Patterning non-flat substrates with a low pressure, room temperature imprint lithography process,” Journal of Vacuum Society and Technology B, Vol. 19, pp. 2162-2172, 2001.
[30]B. J. Choi, S. V. Sreenivasan, S. Johnson, M. Colburn, C. G. Willson, “Design of orientation stages for step and flash imprint lithography,” Precision Engineering, Vol. 25, pp. 192-199, 2001.
[31]B. J. Choi, M. Meissl, M. Colburn, T. Bailey, P. Ruchhoeft, S. V. Sreenivasan, F. Prins, S. Banerjee, J. G. Ekerdt, C. G. Willson, “Layer-to-layer alignment for step and flash imprint lithography,” Proceedings of SPIE, Vol. 4343, pp. 436-439, 2001.
[32]T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, M. Stewart, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, “Step and flash imprint lithography: a technology review,” Future Electron Devices, Vol. 11: 54, 2000.
[33]T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis,” Journal of Vacuum Society and Technology B, Vol. 18, pp. 3572-3577, 2000.
[34]M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivasan, J. Hollenhorst, C. G. Willson, “Step and flash imprint lithography for sub-100nm patterning,” Proceedings of SPIE, Vol. 3997, pp. 453-457, 2000.
[35]M. Colburn, I. Suez, B. J. Choi, M. Meissl, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers,” Journal of Vacuum Society and Technology B, Vol. 19, pp. 2685-2689, 2001.
[36]T. C. Bailey, D. J. Resnick, D. Mancini, K. J. Nordquist, W. J. Dauksher, E. Ainley, A. Talin, K. Gehoski, J. H. Baker, B. J. Choi, S. Johnson, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Template fabrication schemes for step and flash imprint lithography,” Microelectronic Engineering, Vol. 61-62, pp. 461-467, 2002.
[37]D. J. Resnick, D. P. Mancini, S. V. Sreenivasan, C. G. Willson, “Release Layers for Contact and Imprint Lithography,” Semiconductor International, pp. 71-80, June 1, 2002.
[38]W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” Journal of Vacuum Society and Technology B, Vol. 20, pp. 2857-2861, 2002.
[39]D. P. Mancini, K. A. Gehoski, E. Ainley, K. J. Nordquist, D. J. Resnick, T. C. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Hydrogen Silsesquioxane for direct e-beam patterning of step and flash imprint lithography templates,” Journal of Vacuum Society and Technology B, Vol. 20, pp. 2896-2901, 2002.
[40]D. J. Resnick, T. C. Bailey, W. J. Dauksher, D. Mancini, K. J. Nordquist, E. Ainley, K. Gehoski, J. H. Baker, S. Johnson, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “High Resolution Templates for Step and Flash Imprint Lithography,” Proceedings of SPIE, Vol. 4688, 205 , 2002.
[41]T. C. Bailey, S. C. Johnson, M. D. Dickey, B. J. Smith, A. T. Jamieson, E. K. Kim, N. A. Stacey, D. Mancini, W. J. Dauksher, K. Nordquist, D. J. Resnick, S. V. Sreenivasan, J. G. Ekerdt, C.G. Willson, “Recent Advances in Step and Flash Imprint Lithography,” Proceedings of 39th Interface Symposium, 2002.
[42]S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, D. P. Mancini, W. J. Dauksher, K. J. Nordquist, D. J. Resnick, “Advances in Step and Flash imprint lithography,” Proceedings of SPIE, Vol. 5037, pp. 197-202, 2003.
[43]D. J. Resnick, D. Mancini, W. J. Dauksher, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, ”Improved step and flash imprint lithography templates for nanofabrication,” Microelectronic Engineering, Vol. 69, pp. 412–419, 2003.
[44]T. Bailey, B. J. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Step and flash imprint lithography: defect analysis,” Journal of Vacuum Society and Technology B, Vol. 19, pp. 2806-2810, 2001.
[45]S. V. Sreenivasan, C. G. Willson, N. E. Schumaker, D. J. Resnick, “Cost of ownership analysis for patterning using step and flash imprint lithography,” Proceedings of SPIE, Vol. 4688, pp. 903-909, 2002.
[46]B. J. Smith, N. A. Stacey, J. P. Donnelly, D. M. Onsongo, T. C. Bailey, C. J. Mackay, S. V. Sreenivasan, S. K. Banerjee, J. G. Ekerdt, C. G. Willson, “Employing step and flash imprint lithography for gate level patterning of a MOSFET device,” Proceedings of SPIE, Vol. 5037, pp. 1029-1034, 2003.
[47]D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, N. Schumaker, “Imprint lithography for integrated circuit fabrication,” Journal of Vacuum Society and Technology B, Vol. 21, pp. 2624-2631, 2003.
[48]T. I. Kamins, D. A. A. Ohlberg, R. Stanley Williams, W. Zhang, S. Y. Chou, “Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting,” Applied Physics Letters, Vol. 74, pp. 1773-1775, March 22, 1999.
[49]M. Li, J. Wang, L. Zhuang, S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Applied Physics Letters, Vol. 76, pp. 673-675, February 7, 2000.
[50]Z. Yu, P. Deshpande, W. Wu, J. Wang, S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied Physics Letters, Vol. 77, pp. 927-929, August 14, 2000.
[51]M. Li, L. Chen, S. Y. Chou, “Direct three-dimensional patterning using nanoimprint lithography,” Applied Physics Letters, Vol. 78, pp. 3322-3324, May 21, 2001.
[52]H. Cao, Z. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu, S. Y. Chou, “Fabrication of 10 nm enclosed nanofluidic channels,” Applied Physics Letters, Vol. 81, pp. 174-176, July 1, 2002.
[53]M. D. Austin, S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Applied Physics Letters, Vol. 81, pp. 4431-4433, December 2, 2002.
[54]M. D. Austin, S. Y. Chou, “Fabrication of a molecular self-assembled monolayer diode using nanoimprint lithography,” Nano Letters, Vol. 3, No. 12, pp. 1687-1690, 2003.
[55]M. Li, H. Tan, L. Chen, J. Wang, S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” Journal of Vacuum Society and Technology B, Vol. 21, pp. 660-663, 2003.
[56]Z. Yu, L. Chen, W. Wu, H. Ge, S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” Journal of Vacuum Society and Technology B, Vol. 21, pp. 2089-2092, 2003.
[57]Z. Yu, H. Gao, W. Wu, H. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” Journal of Vacuum Society and Technology B, Vol. 21, pp. 2874-2877, 2003.
[58]W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y Chou, P. A. Kohl, J. Krotine, J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology, Vol. 14, pp. 578-583, 2003.
[59]W. Wu, J. Gu, H. Ge, C. Keimel, S. Y. Chou, “Room-temperature Si single-electron memory fabricated by nanoimprint lithography,” Applied Physics Letters, Vol. 83, pp. 2268-2270, September 15, 2003.
[60]Z. Yu, S. Y. Chou, “Triangular profile imprint molds in nanograting fabrication,” Nano Letters, Vol. 4, No. 2, pp. 341-344, 2004.
[61]J. Wang, X. Sun, L. Chen, L. Zhuang, S. Y. Chou, “Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography,” Applied Physics Letters, Vol. 77, pp. 166-168, July 10, 2000.
[62]W. Zhang, S. Y. Chou, “Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers,” Applied Physics Letters, Vol. 79, pp. 845-847, August 6, 2001.
[63]W. Zhang, S. Y. Chou, “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,” Applied Physics Letters, Vol. 83, pp. 1632-1634, August 25, 2003.
[64]Mingtao Li, Lei Chen, Wei Zhang, Stephen Y Chou, “Pattern transfer fidelity of nanoimprint lithography on six-inch wafers,” Nanotechnology, Vol. 14, pp. 33-36, 2003.
[65]S. Y. Chou, L. Zhuang, L. Guo, “Lithographically induced self-construction of polymer microstructures for resistless patterning,” Applied Physics Letters, Vol. 75, pp. 1004-1006, August 16, 1999.
[66]X. Lei, L. Wu, P. Deshpande, Z. Yu, W. Wu, H. Ge, S. Y. Chou, “100 nm period gratings produced by lithographically induced self-construction,” Nanotechnology, Vol. 14, pp. 786-790, 2003.
[67]S. Y. Chou, C. Keimel, J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, pp. 835-837, June 20, 2002.
[68]Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, S. Y. Chou, “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography,” Applied Physics Letters, Vol. 83, pp. 4417-4419, November 24, 2003.
[69]G. Lecarpentier, “Manufacturing solutions for nano-imprinting,” www.suss.com-Minanet Forum 2003.
[70]莊達人, VLSI製造技術 -五版修訂, 高立圖書有限公司, ISBN : 957-584-985-X, 2002.
[71]F. Laermer, A. Schilp, “Method for anisotropic plasma etching of substrates,” US Patent No 5498312, March 12, 1996.
[72]I. R. Johnston, H. Ashraf, J. K. Bhardwaj, J. Hopkins, A. M. Hynes, G. Nicholls, S. A. McAuley, S. Hall, L. Atabo, “Etching 200 mm diameter SCALPEL masks with the ASE process,” Surface Technology Systems Technical Publications, 2000.
[73]H. Ashraf, J. K. Bhardwaj, S. Hall, E. Guibarra, J. Hopkins, A. M. Hynes, I. Johnston, L. Lea, S. MccAuley, G. Nicholls, P. O’brien, “Defining conditions for the etching of silicon in an inductive coupled plasma reactor,” Surface Technology Systems Technical Publications, 1999.
[74]G. Craciun, M. A. Blauw, E. van der Drift, P. M. Sarro, “Temperature influence on etching deep holes with SF6/O2 cryogenic plasma,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 390-394, 2002.
[75]H. A. Bethe, “Theory of diffraction by small holes,” Physical Review, Vol. 66, pp. 163-182, October 1, 1944.
[76]S. A. Darmanyan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Physical Review B, Vol. 67, pp. 035424, 2003.
[77]L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Physical Review Letter, Vol. 86, pp. 1114-1117, February 5, 2001.
[78]E. Altewischer, M. P. van Exter, J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature, Vol. 418, pp. 304-306, July 18, 2002.
[79]H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, Vol. 58, pp. 6779–6782, 1998.
[80]T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” Journal of the Optical Society of America B, Vol. 16, pp. 1743-1748, 1999.
[81]D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Advanced Materials, Vol. 11, pp. 860-862, 1999.
[82]D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through sub-wavelength apertures,” Applied Physics Letters, Vol. 77, pp. 1569-1571, September 11, 2000.
[83]T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single sub-wavelength aperture,” Optics Letters, Vol. 26, pp. 1972-1974, 2001.
[84]T. Thio, H. J. Lezec, T. W. Ebbesen, “Giant optical transmission of sub-wavelength apertures : physics and application,” Nanotechnology, Vol. 13, pp. 429-432, May 23, 2002.
[85]T. K. Gaylord, M. G. Moharam, “Analysis and Applications of optical diffraction by gratings,” Proceedings of the IEEE, Vol. 73, pp. 894-937, 1985.
[87]L. F. Thompson, C. G. Wilson, M. J. Bowden, Introduction to Microlithography Second Edition, ISBN: 0841228485, 1994.
[88]P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication. Volume 1: Microlithography, SPIE-International Society for Optical Engine, ISBN: 0819423785, 1997.
[89]S. A. Campbell, The Science and Engineering of Microelectronics Fabrication, Oxford University Press, Second Edition, ISBN: 0195136055, 2000.
[90]N. D. Wittels, C. I. Youngman, Proceedings of the 8th International Conference on Electron and Ion Beam Science and Technalogy, R. Bakish, editor, PV 78-5, 670 pages, The Electrochemical Society, 1978.
[91]M. Parikh, “Corrections to proximity effects in electron beam lithography. I. Theory,” Journal of Applied Physics, Vol. 50, pp. 4371-4377, 1979.
[92]E. Kratschmer, “Verification of a proximity effect correction program in electron-beam lithography,” Journal of Vacuum Society and Technology, Vol. 19, pp. 1264-1268, 1981.
[93]H. L. Berkowity, R. L. Lux, Proceedings of the l0th International Conference on Electron and Ion Beam Science and Technology, R. Bakish, editor, PV 83-2, 474 pages, The Electrochemical Society, 1983.
[94]M. Sato, K. Kawabuchi, M. Yoshimi, T. Yamazaki, “Submicron electron-beam patterning of aluminum by a double-layer pattern transfer technique,” Journal of Vacuum Society and Technology, Vol. 19, pp. 1329-1332, 1981.
[95]G. Owen, P. Rissman, “Proximity effect correction for electron beam lithography by equalization of background dose,” Journal of Applied Physics, Vol. 54, pp. 3573-3581, 1983.
[96]ELS-7500EX TFE Electron Beam Lithography System Instruction Manual, ELIONIX Inc.
[97]E. Qu´evy, B. Parvais, J. PRaskin, L. Buchaillot, D. Flandre, D. Collard, “A modified Bosch-type process for precise surface micromachining of polysilicon,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 328-333, 2002.
[98]I. Puscasu, D. Boreman, R. C. Tiberio, D. Spencer, R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” Journal of Vacuum Society and Technology B, Vol. 18, pp. 3578-3581, 2000.
[99]C. M. Park, B. H. Choi, C. K. Hyon, S. W. Hwang, D. Ahn, E. K. Kim, “Nano mold lithography for 40-nm patterns,” Journal of the Korean Physical Society, Vol. 39, pp. 157-159, 2001.
[100]N. Roos, T. Luxbacher, T. Glinsner, K. Pfeiffer, H. Schulz, Hella-C. Scheer, “Nanoimprint lithography with a commercial 4 inch bond system for hot embossing,” Presented at SPIE’S Microlithography, Santa Clara, CA, February 27-28, 2001.
[101]O. Bobenstetter, T. Glinsner, P. Lindner, N. Roos, “Nanoimprinting by using a State of the Art 40kN Hot Embosser,” Presented at Micro and Nanoingeneering, Grenoble, September 16-19, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔