(3.235.139.152) 您好!臺灣時間:2021/05/08 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖柏亭
研究生(外文):Bo-Ting Liao
論文名稱:自聚式量子點應變效應之研究
指導教授:郭茂坤郭茂坤引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:106
中文關鍵詞:有限元素法薛丁格方程式自聚式量子點應變
外文關鍵詞:strainfinite element methodSchrodinger equationself-assembled quantum dot
相關次數:
  • 被引用被引用:3
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究旨在研究自聚式量子點的應變效應,並以砷化銦(鎵)/砷化鎵(In(Ga)As/GaAs)為基礎的自聚式量子點為例,分析其機械及光學特性。文中首先描述目前文獻中模擬異質材料接合問題所常見的三種不同的「等效熱應力理論」,並以理論證明此三種模擬方法,對於裸露型量子點,都將得到相同的結果。
本研究並以線彈性力學及等效熱應力理論,配合有限元素法套裝軟體,估算量子點內因異質材料間的晶格不匹配所引致的應變場分佈;同時將模擬所得之應變場,與參考文獻利用「高解析影像處理法」所量測得之量子點應變場,相互比較。本研究澄清該系列文獻對應變的定義,同時發現考慮砷化銦(鎵)量子點中的銦之濃度後,模擬的應變場與實驗結果十分吻合;亦即對於應變場模擬而言,量子點中的銦之濃度為不可忽略的因素。
最後,本研究將此應變場效應,藉由變形勢能的方式,加入薛丁格方程式中,而同樣以有限元素法予以分析,藉此評估應變效應對於導電帶、價電帶的特徵能量與電子、電洞機率密度函數分佈之影響,進而得到能帶間的躍遷能量與發光波長。
Abstract
This research investigates the strain effects and the optical properties of In(Ga)As/GaAs self-assembled quantum dots. There are three different models in the literatures using thermal stress theories to investigate the strain fields of heterojunction problems. In this work, it is shown analytically that these three different models lead to the identical result, at least for unburied quantum dots.
A Model based on linear elasticity and thermal stress theory is then developed to analyze the strain field induced by lattice-mismatch between quantum dot and substrate. Some obtained numerical results are then compared against to the experimental data reported by others using high resolution image processing. The misinterpretation of strain in above-mentioned data is pointed out and the experimental data are then re-interpreted. It is found that the numerical results and the re-interpreted data have excellent agreement as long as the concentration of In is taken into account.
Finally, the induced strain field in the quantum dot is incorporated, with the aid of the Pikus-Bir Hamiltonian and Luttinger-Kohn formalism, into the three-dimensional steady state effective mass Schrödinger equation. The solutions of the steady state Schrödinger equations are solved numerically again by using of a commercial finite element package. The energy levels as well as the wave functions of both conduction and valence bands of quantum dot are calculated. Energies and wavelengths of interband optical transitions are then obtained numerically.
目錄
目錄 i
表目錄 iii
圖目錄 v
第一章 導論 1
1-1研究動機 1
1-2量子點製程 2
1-3文獻回顧 3
1-4分析架構 6
1-5內容大綱 8
第二章 彈性力學理論架構 9
2-1晶格不匹配的形成 10
2-2統御方程式與邊界條件 11
2-3量子點應變場模擬 12
2-3-1材料的組成律 12
2-3-2等效熱應力理論 15
2-3-3三種等效熱應力理論之驗證 18
2-4等效等向性材料探討 32
第三章 量子力學理論架構 34
3-1薛丁格方程式 34
3-2有效質量理論 35
3-3異質結構的位能函數與變形勢能 40
第四章 模擬結果與分析 45
4-1量子點應變場模擬 45
4-1-1砷化銦鎵量子點應變場模擬 46
4-1-2砷化銦量子點應變場模擬 48
4-2量子點應變場模擬結果 51
4-2-1砷化銦鎵量子點應變場模擬結果 51
4-2-2砷化銦量子點應變場模擬結果 52
4-3砷化銦量子點光學特性模擬 55
4-4砷化銦量子點光學特性模擬結果 57
第五章 結論與未來展望 61
5-1結論 61
5-2未來展望 62
參考文獻 63
附錄A:FEMLAB係數設定 67
參考文獻
[1]P. Harrison, Quantum Wells, Wires and Dots: theoretical and computa¬tional physics, John Wiley & Sons, New York (2000).
[2]N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots”, Elec. Lett. 30, 1416(1994).
[3]O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers”, Elec. Lett. 32, 1302(1996).
[4]M. Asada, Y. Miyamoto, Y. Suematsu, ”Gain and the threshold of three-dimensional quantum-box lasers”, IEEE J. Quant. Elec. 22, 1915(1986).
[5]T. C. Lin, S. C. Lee, H. H. Cheng, ”Silicon-germanium spherical quantum dot infrared photodetectors prepared by the combination of bottom-up and top-down technologies”, J. Vacu. Scie. and Tech. B 22, 109(2004).
[6]S. F. Tang, S. Y. Lin, S. C. Lee, ”InAs/GaAs quantum dot infrared photodetector (QDIP) with double Al0.3Ga0.7As blocking barriers”, IEEE Trans. Elec. Devices 49, 1341(2002).
[7]J. H. Davies, The physics of low-dimensional semiconductors, Cambridge(1998).
[8]W. Seifert, N. Carisson, M. Miller, M. E. Pistol, L. Samuelson, L. R. Wallenberg, “In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode”, Prog. Crystal Growth and Charact. 33, 423(1996).
[9]D. J. Eaglesham, M. Cerullo, “Dislocation free Stranski-Krastanow growth of Ge on Si(100)”, Phys. Rev. Lett. 64, 1943(1990).
[10]C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots”, J. Appl. Phys. 83, 2548(1998).
[11]M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar & P. Messina, “Multimillion-atom molecular dynamics simulation of atomic level stresses in Si(111)/Si3N4(0001) nanopixels”, Appl. Phys. Lett. 72, 1969(1998).
[12]Y. Kikuchi, H. Sugii, K. Shintani, “Strain profiles in pyramidal quantum dots by means of atomistic simulation”, J. Appl. Phys. 89, 1191(2001).
[13]G. S. Pearson, D. A. Faux, “Analytical solutions for strain in pyramidal quantum dots”, J. Appl. Phys. 88, 730(2000).
[14]D. A. Faux, J. R. Downes, E. P. O’Reilly, “A simple method for calculating strain distributions in quantum wire structures”, J. Appl. Phys. 80, 2515(1996).
[15]J. R. Downes, D.A. Faux, E. P. O’Reilly, “A simple method for calculating strain distributions in quantum dot structures”, J. Appl. Phys. 81, 6700(1997).
[16]A. E. Romanov, G. E. Beltz, W. T. Fischer, P. M. Petroff, J. S. Speck, “Elastic fields of quantum dots in subsurface layers”, J. Appl. Phys. 89, 4513(2001).
[17]T. Benabbas, P. Francois, Y. Androussi, A. Lefebvre, “Stress relaxation in highly strained InAs/GaAs structures as studied by finite element analysis and transmission electron microscopy”, J. Appl. Phys. 80, 2763(1996).
[18]G. Muralidharan, “Strains in InAs quantum dots embedded in GaAs: A finite element study”, Jpn. J. Appl. Phys. Part2, 39, L658(2000).
[19]G. R. Liu, S. S. Quek Jerry, “A finite element study of the stress and strain fields of InAs quantum dots embedded in GaAs”, Semicond. Sci. Technol. 17, 630(2002).
[20]T. Benabbas, Y. Androussi, A. Lefebvre, “A finite element study of strain fields in vertically aligned InAs islands in GaAs”, J. Appl. Phys. 86, 1945(1999).
[21]S. Kret, T. Benabbas, C. Delamarre, Y. Androussi, A. Dubon, J. Y. Laval, A. Lefebvre, ”High resolution electron microscope analysis of lattice distortions and In segregation in highly strained In0.35Ga0.65As coherent islands grown on GaAs(001)”, J. Appl. Phys. 86, 1988(1999).
[22]S. Kret, C. Delamarre, J. Y. Laval, A. Dubon, “Atomic-scale mapping of local lattice distortions in highly strained coherent islands of InxGa1-xAs/GaAs by high resolution electron microscopy and image processing”, Philos. Mag. Lett. 77, 249(1998).
[23]S. Kret, P. Ruterana, A. Rosenauer, D. Gerthsen, ”Extracting quantitative information from high resolution electron microscopy”, Phys. Stat. Sol. (b) 227, 247(2001).
[24]K. Tillmann, A. Thust, M. Lentzen, P. Swiatek, A. Förster, K. Urban, W. Laufs, D. Gerthsen, T. Remmele, A. Rosenauer, ”Determination of segregation, elastic strain and thin-foil relaxation in InxGa1-xAs islands on GaAs(001) by high-resolution transmission electron microscopy”, Philos. Mag. Lett. 74, 309(1996).
[25]J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proc. R. Soc. London Ser. A 241, 376(1957).
[26]J. D. Eshelby, “The elastic field outside an ellipsoidal inclusion”, Proc. R. Soc. London Ser. A 252, 561(1959).
[27]M. Grundmann, O. Stier, D. Bimberg, ”InAs/GaAs pyramidal quantum dots:Strain distribution, optical phonons, and electronic structure”, Phys. Rev. B 52, 11969(1995).
[28]Y. Li, O. Voskoboynikov, C. P. Lee, S. M. Sze, O. Tretyak, “Electron energy state dependence on the shape and size of semiconductor quantum dots”, J. Appl. Phys. 90, 6416(2001).
[29]J. Y. Marzin, G. Bastard, “Calculation of the energy levels in InAs/GaAs quantum dots”, Solid State Commun. 92, 437(1994).
[30]M. A. Cusack, P. R. Briddon, M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots”, Phys. Rev. B 54, R2300 (1996).
[31]M. A. Cusack, P. R. Briddon, M. Jaros, “Electronic structure, impurity binding energies, absorption spectra of InAs/GaAs quantum dots”, Physica B 253, 10(1998).
[32]C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations”, Phys. Rev. B 57, 7190(1998).
[33]O. Stier, M. Grundmann, D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band theory”, Phys. Rev. B 59, 5688(1999).
[34]H. Fu, L. W. Wang, A. Zunger, “Applicability of the method to the electronic structure of quantum dots”, Phys. Rev. B 57, 9971 (1998).
[35]H. T. Johnson, L. B. Freund, C. D. Akyuz, A. Zaslavsky, “Finite element analysis of strain effects on electronic and transport properties in quantum dots and wires”, J. Appl. Phys. 84, 3714(1998).
[36]H. T. Johnson, V. Nguyen, A. F. Bower, “Simulated self-assembly and optoelectronic properties of InAs/GaAs quantum dot arrays”, J. Appl. Phys. 92, 4653(2002).
[37]H. Jiang, J. Singh, “Conduction band spectra in self-assembled InAs/GaAs dots:A comparison of effective mass and an eight-band approach”, Appl. Phys. Lett. 71, 3239(1997).
[38]D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures”, Thin Solid Films 267, 32(1995).
[39]S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gosele, J. Heydenreich, U. Richter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Y. Egorov, P. S. Kop’ev, Z. I. Alferov, “Structural characterization of (In,Ga)As quantum dots in a GaAs matrix”, Phys. Rev. B 51, 14766(1995).

[40]M. Geiger, A. Bauknecht, F. Adler, H. Schweizer, F. Scholz, “Observation of the 2D-3D growth mode transition in the InAs/GaAs system”, J. Grys. Growth 170, 558(1997).
[41]洪連輝、劉立基、魏榮君編譯,固態物理學導論,高立圖書有限公司(1996)。
[42]S. L. Chuang, Physics of optoelectronic devices, John Wiley & Sons, New York (1995).
[43]S. Christiansen, M. Albrecht, H. P. Strunk, P. O. Hansson, E. Bauser, “Reduced effective misfit in laterally limited structures such as epitaxial islands”, Appl. Phys. Lett. 66, 574(1995).
[44]游景翔,“柱狀量子點應變效應之研究”,國立臺灣大學應用力學研究所碩士論文(2003)。
[45]T. R. Lin, B. T. Liao and M. K. Kuo, “Strain effects on pyramidal InAs/GaAs Quantum dot”, 4th WSEAS Int. on Nanoelec. and Nanotech., 1901(2004).
[46]T. R. Lin, B. T. Liao and M. K. Kuo, “Optical properties of InAs/GaAs quantum dot grown by epitaxy”, Proc. of IMECE (International Mechanical Engineering Congress), 2004(submitted).
[47]廖柏亭、游景翔、郭茂坤,“金字塔型量子點之應變效應”,中華民國第二十七屆全國力學會議(學生論文競賽)。
[48]T. R. Lin, M. K. Kuo, B. T. Liao, K. P. Hung, “Mechanical and optical properties of InAs/GaAs self-assembled quantum dots”, Bulletin of the Colle. Eng., N. T. U., 91, 121(2004).
[49]J. Singh, Quantum Mechanics - Fundamentals and Applications to Technology,John Wiley & Sons, New York (1997).
[50]G. Bastard, Wave Mechanics Applied to Semiconductor hetero- structures, Halsted Press, New York (1988).
[51]李嗣涔、管傑雄、孫台平合著,半導體元件物理,三民書局(1999)。
[52]C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory”, Phys. Rev. B 39, 1871(1989).
[53]P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, T. S. Jones, “Composition of InAs quantum dots on GaAs(001):direct evidence for (In,Ga)As alloying”, Phys. Rev. B, 58, 15981(1998).
[54]F. Heinrichsdorff, A. Krost, M. Grundmann, D. Bimberg, F. Bertram, J. Christen, A. Kosogov, P. Werner, “Self organization phenomena of InGaAs/GaAs quantum dots grown by metalorganic chemical vapour deposition”, J. Crystal Growth, 170, 568(1997).
[55]K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. M. Petroff, G. H. Dohler, “Carrier relaxation and electronic structure in InAs self-assembled quantum dots”, Phys. Rev. B 54, 11346(1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔