(3.236.214.19) 您好!臺灣時間:2021/05/10 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱宏昇
研究生(外文):Hong-Sheng Qiu
論文名稱:金屬薄膜點火晶片設計模擬
論文名稱(外文):Design and Analysis of Metal Thin-Film Ignition Chip
指導教授:翁宗賢
指導教授(外文):Zong-Xian Weng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:微機電引燃器電橋晶片
外文關鍵詞:MEMSIgniterBridge wirechip
相關次數:
  • 被引用被引用:5
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著微機電製程技術的成熟,運用製程技術製作電點火晶片取代傳統爆炸電橋絲,具有發火能量小、反應時間短、電橋爆炸溫度高等優點。這類固態點火晶片可應用在啟動汽車安全氣囊、點燃飛彈火箭系統、引爆鈍感主裝炸藥與燃料推進等方面,提供一種更為可靠的機制。運用於軍事用途時,電點火電橋晶片安裝在具有點火藥鋯粉之引燃器上,並須通過低發火能、低反應時間、抗靜電放電、抗電磁干擾等軍規測試。
在以半導體製程研製晶片電橋方面,使用到微影、薄膜沉積與光阻掀舉等製程來製作金屬薄膜之電點火晶片。並已成功製造出寬30μm、長600μm之金電橋,單電橋電阻值約14Ω,並聯雙電橋約7Ω,三並聯電橋約4.5Ω,四並聯電橋約3Ω。
在電橋點火時物理性質上的探討,本文以數值方法為出發點,引用電哥尼能之觀念與電熱模式,在改變點火的模態與金屬電橋的尺寸下,模擬分析十種金屬之點火時間、發火能量與爆炸溫度,找尋出低發火能量與高爆炸溫度的材料與尺寸。
為避免高壓靜電引起點火藥意外點火,本文採用反向稽納二極體與 放電電路釋放靜電,反向稽納二極體的作用在於當正常點火電壓時,低的點火電壓不通過 放電接地端,因而正常地對金屬電橋點火;在靜電放電時,上萬伏靜電壓引起稽納二極體達到反向崩潰電壓,在奈秒的時間內快速地將靜電電壓導出點火晶片,有效地防止靜電走火。本文以數值分析模擬在1秒的人體靜電放放電時間作用下,推算電路所需連接的電阻與電容,模擬分析得到應連接放電時間常數τ等於0.26奈秒的電阻與電容,才可以同時滿足金電橋溫度低於點火藥鋯粉之點火溫度300℃與軍規安全靜電電壓100V以下。
Micro Electromechanical Technology has made great progress,using the Process-skill to manufacture Electrical-Igniting-Chip to replace an old Exploding-Bridge-Wire,Electrical-Igniting-Chip has the advantage of lower firing energy、shorter ignition time、higher exploding temperature, etc. To switch an air bag of cars,to ignite bombs and rockets,to burn blunt master explosive,to ignite fuel to push ahead and is a kind of more reliable product. When it is an military use,it is set on an
ignition device which has the ignition powder Zr in it ,and the Exploding Bridge Wire must pass the military standard of low firing energy test、low ignition time test、avoiding electrostatic discharge test and avoiding electromagnetic disturbing.
In the manufacture of semiconductor process,use the process of yallow light、the process of thin film、the process of lift off to manufacture the Exploding Bridge Wire. And have successfully manufacture the golden Exploding Bridge Wire, the size of it is 30μm in wedth and 600μm in lenth. The single Exploding Bridge Wire is single or is parallel connection of two、three and four Exploding Bridge Wire,and each resistences is about 14Ω、7Ω、4.5Ω、3Ω.
In the respect of firing energy and ignition time, this paper use the idea of mathematical method, use the formulas for Electrical Gurney Energy and Electrical Heat to analyse the ignition time、firing energy and exploding temperature of ten kind of metal of the every Exploding Bridge Wire size. Change the parameter of RCL discharge system to get the numerical solution, from the solution to find the material and size of low firing energy and high exploding temperature, and it is a reverse engineering.
In the respect of avoiding electrostatic discharge causing the accident of ignition of Zr , use the Zenor diode of backward direction and RC discharge circuit , the discharged
current of low voltage of capacitance doesn’t pass the RC element connected to ground terminal, and ignite the Exploding Bridge Wire. Thousands of electrostatic voltage break down the zenor diode of backward direction , and electrostatic voltage discharge in Exploding Bridge Wire in nano seconds to avoid electrostatic voltage igniting. We analyse the electrostatic voltage discharge in 1 sec by using the numerical method,to caculate the time constant of RC circuit. It shows that the time constant of RC circuit should be about 0.26 nano second to satisfy both conditions, the temperature of Exploding Bridge Wire is lower than the ignition temperature of the powder of Zr, which is 300℃, and the voltage of Exploding Bridge Wire is lower than the military standard of the safe electrostatic voltage .
目次 頁次
摘要…………………………………………………...……………………..Ⅰ
目錄…………………………………………………...……………………..Ⅲ
附圖目錄……………………………………………...…....………...…….Ⅵ
附表目錄…………………………………………………..….…………....Ⅹ
XI.
符號說明………………………………………………………………….


第一章 緒論
1.1 引言…………………………………………………………….….…1
1.2 文獻回顧……………………………………………………….…….2
1.3 研究動機與本文內容………………………………………….…….5
第二章 電哥尼能理論與電熱原理
2.1 高電壓飛板撞擊點火………………………………………….…….7
2.1.1 電哥尼能理論………………………………………….……7 2.1.2 三夾層質量參數分析………………………………..….....10
2.2 低電壓電熱焦耳點火……………………………………….……...13
2.2.1 固態燃料在引燃器的點火燃燒….………………………..13
2.2.2 引燃器點火電路之相關原理…………...…………………15
2.2.3 金屬起爆相關原理………………………………………...16
2.2.4 電熱原理…………………………………………………...17
第三章 半導體製程研製晶片電橋
3.1 光罩設計……………………………………………………………19
3.2 製程…………………………………………………………………20
3.2.1 氧化熱製程…………………………………………………20
3.2.2 微影…………………………………………………………21
3.2.3 薄膜沉積……………………………………………………23
3.2.4 光阻掀舉……………………………………………………24
3.3 成品觀測與量測……………………………………………………24
第四章 電橋點火的模擬分析與討論
4.1 電橋在RLC放電電路的點火……………………………..……....26
4.1.1 過壓起爆模態……………………………………………...27
4.1.2 臨界點起爆模態…………………………………………...29
4.1.3 電橋線寬對發火能的影響………………………………...33
4.2 安全設計……………………………………………………………34
4.2.1 靜電………………………………………………………...34
4.2.2 防治靜電意外點火之電路設計及相關理論……………...35
4.2.3 靜電點火模擬之分析與討論……….……………………..40
第五章 結論與未來展
5.1 結論……………………………………………………...………....43
5.2 未來展望………...…….………………………………...…………45



參考文獻………………....………………....…………………...……...…46
附圖……………..……………………………………………………....…..48
附表…………………………………....………………………………...….72
附錄
製程參數表…………………….………………………………...…......79
[1] Bickes, Robert W., Jr.; Schwarz, Alfred C.; “Semiconductor
bridge(SCB) ignitiator”. US patent # 4,708,060, Nov. 1987.
[2] Nerheim, Eldon; “Integrated silicon plasma switch”. US patent
#4,840,122, Jun. 1988.
[3] Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.; “Ferrite
core coupled slapper detonator apparatus and method”. US patent
#4,852,493, Aug. 1989.
[4] Benson, David A., Jr; Bickes, Robert W.; Blewer, Robert S.; “Tung
-sten bridge for low energy ignition of explosive and energetic materials”. US patent #4,976,200, Dec. 1990.
[5] Zeman, Samuel; Betts, Robert E.; “Safe ordnance initiation system.”
US patent #5,144,893, Sept. 1992.
[6] Hartman; J. Keith, McCampbell; Carroll B.; “Zener diode for protection of semiconductor explosive bridge.” US patent #5,179,248, Jan. 1993.
[7] Winaver, Andre; Broussoux, Dominique ; “Detonating device for a secondary explosive charge.” US patent #5,317,973, Jun. 1994.
[8] Frank; Alan M.; Lee; Ronald S.; “Precision flyer initiator.” US patent #5,756,925, May. 1998.
[9] Kye Nam Lee; Myung-Il Park; Sung-Ho Choi; Chong-Ook Park; Han- S. Uhm; “Charactoristics of plasma generated by polysilicon semiconductor bridge (SCB).” Senser and Actuators, pp. 252-257, Nov, 2001.
[10] Heather H. DiBiaso; Brian A. English; Mark G. Allen; “Solid-
phase conductive fuels for chemical microactuators” in Senser and Actuators, pp. 260-266, Oct, 2003.
[11] J. E. Kennedy; “Gurney Energy of Explosives”, Sandia Labora-
tories, pp. 5-7, Dec, 1970.
[12] T. J. Tucker; P. L. Stanton; “Electrical Gurney Energy” in Sandia Laboratories, pp. 5-9, Jun, 1975.
[13] 林憲基, 燃燒模式之研究, 國立台灣大學機械研究所碩士論文, 1992.
[14] 李進興, 靜電與火工品, 中華民國火藥學會九十二年年會論文
專輯, 2003.
[15] 周元昉, 微系統導論講義, pp. 92-93, Jun, 2004.
[16] 莊達人, VLSI製造技術, 高立圖書有限公司, 2000.
[17] 林維甫, FORTRAN 77 結構化程式設計, 松崗電腦圖書資料有限公司, 1985.
[18] Curtis F. Gerald, 應用數值分析, 曉園出版社, 1984.
[19] 黃燕昌, 電路學, 弘智出版社, 2003.
[20] Tecplot 9.0 User’s Maual, Amtec Engineering. Inc.,Mar, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔