(3.238.130.97) 您好!臺灣時間:2021/05/18 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張益祥
研究生(外文):I-Hsiang Chang
論文名稱:斜交指叉式表面聲波元件在微液珠控制之應用
論文名稱(外文):Application of Slanted Finger Interdigital Transducer to Control Micro Droplets
指導教授:吳政忠
指導教授(外文):Tsung-Tsong Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:表面聲波多通道微流體晶片耦合模型理論相對振幅分佈斜交指叉式表面聲波元件C18疏水性薄膜聲射流接觸角
外文關鍵詞:COM modelOTSMulti-channel microfluidic chipAmplitude profileContact angleSAWSFITAcoustic streaming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Using Surface acoustic wave (SAW) to drive droplets is developed recently. SAW could induce an acoustic streaming inside a droplet and move it along the propagation direction. However, the SAW amplitudes radiated from uniform IDT are equivalent along the aperture, and they move the droplets within the same delay line simultaneously. This phenomenon is not suitable for a multi-channel microfluidic chip. For this reason, SFIT is used to replace uniform IDT. The SAW amplitude profile excited by SFIT is not uniform along the aperture, and the position of the maximum amplitude can be changed by adjusting the input frequency. Therefore, the droplets can be driven individually by varying the frequency. In addition, the frequency response can be used to detect the position of the droplet because the transmitted SAW intensity is radiated into the liquid.
In this thesis, because hydrophobic film and acoustic streaming dominate the performance of driving droplets, we introduce these mechanisms first. And then, we use the coupling-of-modes (COM) model to simulate the amplitude profile and the frequency response of SFIT. According to the simulation, we can design optimum SFIT to detect and move the droplets. The frequency responses of the experiments for detecting droplets show a good agreement with the simulated results. Furthermore, the droplets are also driven respectively at different frequency by SFIT. Therefore, using SFITs to construct a multi-channel microfluidic chip is proven feasible.
致謝 I
ABSTRACT 2
NOTATIONS 3
CONTENTS VI
FIGURES VIII
TABLES X
CHAPTER 1 INTRODUCTION 1
1-1 RESEARCH MOTIVATION 1
1-2 LITERATURE REVIEW 2
1-3 CONTENTS OF THE CHAPTERS 4
CHAPTER 2 ACTUATING DROPLETS BY SURFACE ACOUSTIC WAVE 6
2-1 SURFACE ENERGY 6
2-1.1 Contact angle 7
2-1.2 Self –Assembled Monolayers 8
2-2 THEORY OF MOVING DROPLETS BY SAW 10
2-2.1 Acoustic Streaming 11
2-2.2 Leaky Rayleigh Wave 14
CHAPTER 3 ANALYSIS OF SLANTED FINGER INTERDIGITAL TRANSDUCER 20
3-1 COUPLING-OF-MODES MODEL 20
3-1.1 The coupling-of-modes equations 21
3-1.2 [P] Matrix 24
3-1.3 [Y] Matrix 25
3-2 THE SIMULATION OF SFIT 27
3-2.1 Amplitude profile 27
3-2.2 Frequency response for detecting the position of droplets 32
3-3 EFFECTS OF PARAMETERS ON THE SFIT 34
CHAPTER 4 FABRICATION, MEASUREMENT AND TRANSPORT TEST 48
4-1 FABRICATION OF SAW DEVICES 48
4-2 FABRICATION OF THE HYDROPHOBIC FILM 49
4-3 DRIVING AND DETECTING THE DROPLETS 52
4-3.1 Mixing and moving the droplets 52
4-3.2 Comparison of the measurement and simulated results 53
4-3.3 Moving droplets by SFIT 55
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 72
5-1 CONCLUSIONS 72
5-2 FUTURE WORKS 73
REFERENCES 76
1. Torkkeili, A., Saarilahti, J. and Häärä, A. (2001), “Electrostatic Transportation of Water Droplets on Superhydrophobic Surfaces”, Proc. IEEE Ultra. Symposium, pp. 475 ~477.
2. Yoshimitsu, Z., Nakajima, A., Watanabe, T. and Hashimoto, K. (2002), “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets”, Langmuir, vol. 18, pp. 5818 ~5822.
3. Parikh, A. N. and Allara, D. L. (1994), “An Intrinsic Relationship between Molecular Structure in Self-Assembled n-Alkylsiloxane Monolayers and Deposition Temperature”, J. Phys. Chem., Vol. 98, pp. 7577~7590.
4. Brzoska, J. B., Azouz, I. B. and Rondelez, F. (1994), “Silanization of Solid Substrates: A Step toward Reproducibility”, Langmuir, vol. 10, pp. 4367 ~4373.
5. Srinivasan, U., Houston, M. R., Howe, R. T. and Maboudian, R. (1998), “Alkyltrichlorosilane-Based Self-Assembled Monolayer Films for Stiction Reduction in Silicon Micromachines”, IEEE J. Microelectromech. Syst., Vol. 7, No. 2, pp. 252~260.
6. Shiokawa, S., Matsui, Y. and Ueda, T. (1989), “Liquid Streaming and Droplet Formation Caused by Leaky Rayleigh Waves”, Proc. IEEE Ultra. Symposium, pp. 643 ~646.
7. Uchida, T., Suzuki, T. and Shiokawa, S. (1995), “Investigation of Acoustic Streaming Excited by Surface Acoustic Waves”, Proc. IEEE Ultra. Symposium, pp. 1081 ~1084.
8. Rathgeber, A., Strobl, C., Kutschera, H. –J. and Wixforth, A. (2002), “Planar Microfluidics – Liquid Handling without Walls”, electronically found at: http://arxiv.org/pdf/physics/0104079
9. Strobl, C. J., Rathgeber, A., Wixforth, A., Gauer, C. and Scriba, J. (2002), “Planar Microfluidic Processors”, Proc. IEEE Ultra. Symposium, pp. 1081 ~1084.
10. Nyborg, W. L. (1965), “Acoustic Streaming”, Physical Acoustics, Principles and Methods, ed Mason, W. P., Vol. 2, Part B, Academic Press, pp. 265~331.
11. Fahy, F. J. (1989), “Sound Intensity”, Academic Press, Northern Ireland.
12. Chang, M. P. (1999), “黏滯性液體負載下層狀壓電晶體波傳之研究”, Master thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
13. Guttenberg, Z., Rathgeber, A., Keller, S., Rädler, J. O., Wixforth, A., Kostur, M., Schindler, M., and Talkner, P. (2004), “Flow Profiling of a Surface Acoustic Wave Nanopump”, electronically found at: http://arxiv.org/PS_cache/cond-mat/pdf/0405/0405199
14. Cross, P. S. and Schmidt, R. V. (1977), “Coupled Surface Acoustic Wave Resonators,” Bell Syst. Tech. Journal, vol. 56, pp. 1447~1482.
15. Abbott, B. P. (1989), “A Coupling-of-Modes Model for SAW Transducers With Arbitrary Reflectivity Weighting,” Ph. D. dissertation, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida.
16. Hyodo, T., Yamanouchi, K. and Shibayama, K. (1968), “The Wide Band Excitation of Elastic Surface Wave Using the Interdigital Electrodes with Variable Pitches,” Pro. Acoustic Society of Japan 1968 Autumn Annual Meeting, 3-1-14, Nov. pp. 193~194 (in Japanese).
17. Campbell, C. K., Ye, Y. and Sferrazza PaPa, J. J. (1982), “Wide-Band Linear Phase SAW Filter Design Using Slanted Transducer Fingers,” IEEE Transactions on Sonics and Ultrasonics, vol. SU-29, NO. 6, July, pp. 224~228.
18. Lin, C. M. (2003), “Analysis of RF Wide Band Layered SAW Filter Using Slanted Finger Interdigital Transducer”, Master thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
19. Visintini, G., Baghai-Wadji, A. and Männer, O. (1992), “Modular Two-Dimensional Analysis of SAW Filters-Part I: Theory”, Proc. IEEE Ultra. Symposium. IEEE Transactions on Ultrasonics, Ferroelectics, and Freq. Contr., vol. 39, No.1, Jan, pp. 61~70.
20. Streibl, M., Beil, F., Wixforth, A., Kadow, C. and Gossard, A. C. (1999), “SAW Tomography – Spatially Resolved Charge Detection by SAW in Semiconductors Structures for Imaging Applications”, Proc. IEEE Ultra. Symposium, pp. 1 ~4.
21. Streibl, M., Beil, F., Wixforth, A., and Kotthaus, J. P. (1999), “Imaging of Acoustic Charge Transport in Semiconductor Heterostructures by Surface Acoustic Waves”, Applied Phys. Letter, vol. 75, pp. 4139~4141.
22. Yatsuda, H. (2000), “Diffraction in Slanted Finger SAW Filters”, Proc. IEEE Ultra. Symposium, pp. 173 ~176.
23. Yatsuda, H., Noguchi, K. and Yamanouchi, K. (2000), “Surface Acoustic Wave Filter Using Floating Electrode Slanted Finger Unidirectional Transducers”, Jan. J. Applied Phys., Vol. 39, Part 1, NO. 5B, May, pp. 3041~3044.
24. Yatsuda, H., Kamiseki, S. and Chiba, T. (2001), “Calculation and Optical Measurement of SAW Diffraction Pattern of Slanted Finger SAW Filters on YZ LiNbO3 and 128YX LiNbO3,” Proc. IEEE Ultra. Symposium, pp. 13~17.
25. Dufilie, P., Kopp, L., Knuuttila, J.V., Vartiainen, J. and Salomaa, M. M. (2001), “Acoutic-Field Distribution within a Fan-Shaped Filter”, Proc. IEEE Ultra. Symposium, pp. 41~44.
26. Kleinfeld, D., Kahler, K. H. and Hockberger, P. E. (1988), “Controlled Outgrowth of Dissociated Neurons on Patterned Substrates”, J. Neurosci., Vol. 8, NO. 11, pp. 4098~4120.
27. Angst, D. L. and Simmons, G.W. (1991), “Moisture Absorption Characteristics of Organosiloxane Self-Assembled Monolayers”, Langmuir, vol. 7, pp. 2236~2242.
28. Ulman, A. (1991), “An Introduction to Ultrathin Organic Films”, Academic Press, San Diego
29. Tsai, Y. S. (1999), ”A kinetic study of the grafting transition temperature in the formation of alkylsilane self-assembled model”, Master thesis, The Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top