( 您好!臺灣時間:2021/05/17 21:16
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Cheng-Min Chen
論文名稱(外文):The study of size distribution of coughing droplet
指導教授(外文):Whei-May Grace Lee
外文關鍵詞:bioaerosolSARSdroplet diameterinfection control
  • 被引用被引用:2
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由人體所排出之飛沫會挾帶著能傳播疾病之微生物可能造成近距離和遠距離的傳染,而飛沫粒徑之大小為主要決定這些含致病菌飛沫之傳播途徑。本研究目的為建立健康個體所呼出飛沫與飛沫核之粒徑分佈,利用採樣袋及管柱來收集,分別以氣動微粒分徑器(Aerodynamic Particle Sizer, APS)及微粒電移動度掃瞄分徑器(Scanning Mobility Particle Sizer, SMPS)系統量測受測者咳嗽所產生之飛沫,以建立完整之飛沫粒徑分佈,及利用一些基本假設,計算其於空氣中之蒸發時間、沈降距離及水平距離,並將各受測者實驗資料進行統計分析,以比較不同年齡和性別之差異。
以APS系統實驗結果顯示,飛沫粒徑範圍為0.5∼20mm,約有90∼95%的咳嗽飛沫粒徑在2 mm∼10 mm之間,眾數介於5∼7 mm,大多數之飛沫其粒徑小於10 mm,飛沫核粒徑分佈範圍從0.5至5 mm之間,絕大部分在0.6∼2 mm;年齡層和性別對於飛沫之粒徑並無顯著差異。而以SMPS系統實驗結果證實咳嗽所產生的飛沫,有部分飛沫其粒徑介於0.02∼0.5 mm間。飛沫傳輸方面,於20℃、相對濕度(RH)50%之環境下,粒徑為5 mm之飛沫蒸發時間只需約0.04秒,而在蒸發前之沈降距離還不到0.002公分,而水平傳播距離約為0.008公分,顯示咳嗽所產生之飛沫,其運動範圍只侷限於產生源附近,且很快地蒸發成飛沫核,飛沫核可長時間於空氣中懸浮,可以隨著氣流傳播,使得病菌可藉由空氣傳播。而飛沫或是飛沫核若沈降於物體表面,亦可能接觸此受污染之物體而受感染。
Droplet exhaled from human may carry microorganisms capable of transmitting disease in short and long distances. The size of droplet will mainly influence the transmission mode of such infectious droplet. The aim of this study was to establish the size distribution of droplet and droplet nuclei exhaled by healthy individuals, and using sample bag and column to collect them. The droplets from human subjects performing coughing were measured by aerodynamic particle sizer (APS) and scanning mobility particle sizer (SMPS) system, and establish the droplet size distribution. Computing the evaporation time, falling distances, horizontal traveling distances with some assumptions. Furthermore, the data was treated with statistical analysis, comparing the difference of different ages and sexual classification.
The data of APS monitoring showed the respiratory droplets ranged from 0.5 to 20 mm and 90~95% of droplets were between 2 and 10 mm. The mode of droplet size distribution is between 5 and 7 mm. Most droplets were less than 10 mm. The diameter of droplet nuclei was found to range in diameter from 0.5 to 5 mm, and the most amount was between 0.6 to 2 mm. The droplets size were not significantly difference in age and sexual classification. The SMPS confirmed the existence of droplets ranged from 0.02 to 0.5 mm. In the environment of 20℃ and 50% relative humidity, it took only 0.04 seconds for 5 mm droplet to evaporate, and the falling distance was less than 0.002 cm, the horizontal traveling distance was about 0.008 cm. It showed the range of droplets produced by coughing was near the source, and evaporating to form droplet nuclei quickly. Droplet nuclei could suspend in the environment for a long time, and transport with air current. The microorganisms may transmit disease by air. Besides, if droplet or droplet nuclei fall on the surface of objects, one may be infected by toughing the infectious objects.

第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究方法 4
第二章 文獻回顧 5
2.1 Severe Acute Respiratory Syndrome 5
2.1.1 SARS的緣起 5
2.1.2 SARS的病原 8
2.1.3 SARS之潛伏期與症狀 9
2.1.4 SARS之傳播途徑 10
2.1.5 SARS的治療 11
2.2 傳染途徑 12
2.2.1 接觸傳染 12
2.2.2 飛沫傳染 12
2.2.3空氣傳染 13
2.2.4 飛沫核對人體之影響 15
2.3生物氣膠 17
2.3.1 生物氣膠之組成 18
2.3.2 生物氣膠之物理特性 19
2.4飛沫之運動行為 20
2.4.1蒸發(evaporation) 20
2.4.2重力沈降(gravitational settling) 24
2.4.3 慣性運動(inertial motion) 28
2.5 飛沫粒徑之探討 29
第三章 實驗設備與實驗方法 36
3.1 實驗設備 36
3.1.1氣動微粒分徑器實驗系統 36
3.1.2 SMPS系統 37
3.2 實驗方法及設備原理 40
3.2.1實驗方法 40
3.2.2 研究對象選擇 40
3.2.3 統計分析 41
3.2.4 Q – Track 41
3.2.5 APS系統(Aerodynamic Particle Sizer Spectrometer) 43
3.2.6 SMPS 系統 45氣膠粒徑篩分儀(Electrostatic Classifier) 45 凝結氣膠計數器(Condensation Particle Counter) 51
3.2.7 飛沫核收集之反應室 52
3.3 操作條件 54
第四章 結果與討論 55
4.1 實驗人數與年齡層 55
4.2 測試實驗 55
4.3 飛沫粒徑分佈圖 59
4.3.1 APS系統 59
4.3.2 SMPS系統 65
4.4 統計分析 68
4.4.1第一類族群 68
4.4.2 第二類族群 71
4.4.3 第三類族群 71
4.4.4 各年齡層之比較 76
4.5 不同生理狀況下之差異 78
4.6 飛沫核之粒徑分佈 81
4.7 飛沫之傳輸 82
4.7.1 飛沫蒸發之時間 82
4.7.2 沈降距離與懸浮時間 84
4.7.3 水平傳播距離 88
4.8 實驗誤差 91
4.8.1 壓力之影響 91
4.8.2 收集效率 91
4.8.3 環境微粒之影響 91
4.8.4 個體之誤差 92
4.8.5 APS系統可能之誤差 92
4.8.6 SMPS 系統可能之誤差 92
第五章 結論與建議 94
5.1 結論 94
5.2 建議 95
參考文獻 96

1.Berger, A., Ch. Drosten , Doerr, H.W. , Sturmer, M. and Preiser, W. (2004). Sever acute respiratory syndrome (SARS) — paradigm of an emerging viral infection, Journal of Clinical Virology, 29,1, 13-22
2.Booth, C.M., Matukas, L.M., Tomlinson G.A., Rachlis A.R., Rose D.B., Dwosh H.A., et al. (2003). Clinical features and short-term outcomes of 144 patientss with SARS in the greater Toronto area, JAMA, 289, 2801-2809
3.Baron, P.A. and Willeke, K. (1993). “Gas and Particle Motion”, IN: Aerosol Measurement, edited by Willeke, K, and Baron, P.A., pp.23-40.
4.Chan-Yeung, M., Yu, W.C.,(2003). Outbreak of severe acute respiratory syndrome in Hong Kong special administrative region : case report. BMJ, 326, 7394, 850-852.
5.Center for Disease Control and Prevention (CDC) (2003). “Guidelines for Environmental Infection Control in Health Care Facilities.” MMWR, 52(RR10), 1-42.
6.Center for Disease Control and Prevention (CDC). Self-Study Modules on Tuberculosis,
7.Cox, C.S. (1995). “Physical Aspects of Bioaerosol Particles” IN: Bioaerosols Handbook, edited by Cox, C.S. and Wathes C.M., pp. 15-25.
8.CHAUSSE, P. and MAGNE, H. (1916). Arch. Med. Exp. 27, 213.
9.Dwosh H.A., Hong H.H., Austgarden D., Herman S. and Schabas R. (2003). Identification and containment of an outbreak of SARS in a community hospital, CMAJ, 168, 1415-1420.
10.Duguid, J. P. (1946). The Size and the Duration of Air-carriage of Respiratory Droplets and Droplet-nuclei, Journal of Hygiene, 44, pp. 471-479
11.Fairchild, C. I., and Stamper J. F. (1987). Particle concentration in exhaled breath, Am. Ind. Hyg. Assoc. J., 48, 948-949.
12.Henry L.Y. Chan, Stephen K.W. Tsui and Loseph J.Y. Sung (2003). Coronavirus in severe acute respiratory syndrome (SARS), TRENDS in Molecular Medicine. Vol. 9 (8), 323-325.
13.Hawkey, P.M., Bhagani, S., and Gillespie, S.H., (2003). Severe acute respiratory syndrome (SARS): breath-taking progress, J Med Microbiol. 52, 609-613.
14.Heitbrink, W. A., Baron P. A., and Willeke, K. (1991). Coincidence in time-of-flight aerosol spectrometer : Phantom particle creation, Aerosol Science and Technology. 14, 1, 112-116.
15.HATCH, T. F. (1942). “Aerobiology.” Washington, D. C. : Amer. Ass. Adv. Sci.
16.Janet Macher, Sc. D., M.P.H. (1999). Bioaerosols : assessment and control, American Conference of Governmental Industrial Hygienists.
17.Hers J. F. Ph. and K. C. Winkler (1973). Airborne transmission and airborne infection, A Halsted Press Book.
18.Jennison, M.W. (1942). Aerobiology Publicat, 17, 106.
19.Ksiazek, T.G. et al. (2003). A novel coronavirus associated with severe acute respiratory syndrome, New Eng. J. Med. 348, 20, 1953-1966.
20.Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., and Joynt, G.M., et al. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong, N Engl J Med. 348:1986–1994.

21.Lawrence, David. (2003). Coronavirus confirmed as cause of SARS, The Lancet, 361, 9370, 1712.
22.Ng, S.K.C., (2003). Possible role of an animal vector in the SARS outbreak at Amoy Gardens. Lancet. 362,9383, 570-572.
23.Poutanen, S.M., Low, D.E., Henry, B., Finkelstein, S., Rose, D., Green, K. et al. (2003). Identification of severe acute respiratory syndrome in Canada, N Engl J Med. 348, 1995–2005.
24.Papineni Rao S., Rosenthal Frank S. (1997). The Size Distribution of Droplets in the Exhaled Breath of Healthy Human Subjects, Journal of Aerosol Medicine- Deposition Clearance and Effects in the Lung. 10 (2), 105-116.
25.Potter, J.L., Matthews, L.W., Lemm, J. and Spector, S. (1963). Human pulmonary secretions in heath and disease, Ann. N. Y. Acad. Sci. 106, 692-697.
26.STRAUSZ, W. (1922). Z. Hyg. 96, 27.
27.Tsang, K.W., Ho, P.L., Ooi, G.C., Yee, W.K., Wang, T., Chang-Yeung, M., et al. (2003) A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 348, 1977-1985.
28.TSI Model 3934 (1993) Scanning Mobility Particle Sizer Instrument Manual.
29.TSI Model 3025 (1992) Ultrafine Condensation Particles Counter Instrument Manual.
30.TSI Model 3071 (1990) Differential Mobility Analyzer Instrument Manual.

31.Seto, W.H., Tsang, D., R Yung, W. H., Ching, T.Y., Ng, T.K., Ho, M., Ho, L.M., Peiris, J.S.M. and Advisors of Expert SARS group of Hospital Authority (2003). Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS), The Lancet. 361, 9368, 1519-1520.
32.World Heath Organization (WHO), (2003). Practical Guidelines for Infection Control in Health Care Facilities , Dec 8.
33.World Health Organization Multicentre Collaborative Network for Severe Acute Respiratory Syndrome (SARS) Diagnosis. (2003). A multicentre collaboration to investigate the cause of severe acute respiratory syndrome, The Lancet. 361, 1730–1733.
34.World Health Organization (WHO), (2003a)
35.World Health Organization, (WHO) (2003b). Chronology of travel recommendations, areas with local transmission, Wkly Epidemiol Rec, 78, 258-259
36.World Health Organization (WHO),(2003c)
37.Hinds, W.C. (1999). Aerosol Technology—Properties, Behavior, and measurement of airborne particles, John Wiley and Son, New York.
38.Wells, W.F. (1955). Airborne contagion and air hygiene, Harvard University Press, Cambridge, Massachusetts.
39.Wells, W.F. (1934). ON AIR-BORNE INFECTION. STUDY Π. DROPLET AND DROPLET NUCLEI, Am. J. Hyg. 20, 611-618.
41.白曛綾, 康育豪.(2003)口鼻飛沫與病毒傳播可能性之初步探討, 2003年氣膠科技研討會,高雄。
42.張靜文.(2003)生物氣膠之物理與毒理, 2003年氣膠科技研討會,高雄。
43.王秋森 陳時欣.(2002) 氣膠技術學, 新文京開發出版有限公司。
44.陳順宇, 鄭碧娥.(1998) 統計學, 華泰書局。
45.陳建仁.(1983)流行病學, 文笙書局。
第一頁 上一頁 下一頁 最後一頁 top