(3.92.96.236) 您好!臺灣時間:2021/05/09 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李欣樺
研究生(外文):Hsin-Hua Lee
論文名稱:消毒副產物有機前質對外加電場薄膜程序之積垢影響研究
論文名稱(外文):Study on the Effects of DBP Precursors on Fouling Electric Enhanced Membranes
指導教授:李公哲李公哲引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:103
中文關鍵詞:腐植酸外加電場薄膜程序阻力串聯模式分子量分布
外文關鍵詞:Resistance in series modelMolecular size distributionHumic acidElectric enhanced membrane process
相關次數:
  • 被引用被引用:4
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用外加電場超過濾薄膜程序處理天然有機物模擬水樣腐植酸,使用GFC分離法依分子量將水樣分為G1-25,000〜3,000 Da、G2-3,000〜500 Da、G3-500〜50 Da三群,並探討在不同壓差與電場操作下之薄膜效率。
在47 kPa、74 kPa、98 kPa壓差過濾未分離之腐植酸,壓差越大通量衰退越嚴重,衰退程度分別為初始通量的85 %、78 %、72 %,並對於腐植酸的去除率亦略有衰減;當使用阻力串聯模式分析亦發現不可逆阻力所占比例隨壓差升高而增加,而可由6 % 升高至21 %。
在固定壓差為98 kPa之5小時操作下,分子量最小的G3群組通量衰最嚴重,衰退至僅有初始值的50 %,而衰退趨勢分別為G3 > G2 > G1 ≒未分離腐植酸。因G3群組分子量小較易穿透膜孔達濾液端,故UV254去除率也僅達70 %,DOC只達47 %;雖小分子群組通量衰退較嚴重,但可逆阻力與弱不可逆阻力所占比例為33 %,比G1群組的12 % 高出甚多,故較高頻率的反沖洗可改善積垢現象。
外加電場由於電泳動與電滲透的作用,在電壓25 V之操作下,對於不同的分子量群組,其通量均可維持在未外加電場初始通量值80 % 以上,SUVA值也比未外加電場時低了一倍,足見外加電場對有機前質之去除有其潛力;但在壓差為98 kPa而電壓為50 V操作下,卻有薄膜效能較25 V差之現象,此與高壓差與高電場的交互作用有關。


The effect of humic acid size distribution as electric enhanced membrane process under various membrane pressure and electric voltage was investigated. Humic acid solution was divided into three groups, namely G1-25,000~3,000 Da, G2-3,000~500 Da and G3-500〜50 Da, by means of gel filtration chromatography according to their apparent molecular weight. Ultrafiltration behaviors were analyzed by the resistance-in-series model.
The results showed that flux declined to the extend of initial flux 85%, 78% and 72% with pressure under 47 kPa, 74 kPa and 98 kPa, respectively. Resistance in series model also revealed that irreversible resistance raised from 6 % to 21%. Besides, humic acid removal efficiency decreased with pressure increase.
While treating various molecular size solution at pressure 98 kPa. The order of flux decline was G3> G2 >G1≒ unfractionated solution. It was believed that smaller solute with stronger adsorption to the membrane pores caused serious membrane fouling and flux decline. Smaller molecular could easily pass through 100k Da membrane, thus UV254 and DOC removal efficiency was only 70 % and 47 %, respectively. However, the reversible and weak reversible resistance of the smaller molecule was 33 %, which was higher than 12 % of G1 group. Thus, frequent backwash was a promising way to deal with smaller solute.
When operating the electric enhanced membrane process, electrophoresis and electroosmosis are the main mechanism to enhance the filtration process. Adding 25 V to the system could keep the flux greater than 80 % of initial flux without electric enhanced. Besides, it has capability to reduce NOM precursors containing in permeate. As a result, the electrical enhanced membrane process has the potential for drinking water treatment.


第一章 前言 1
1.1 研究動機與目的 1
1.2 研究項目 3

第二章 文獻回顧 4
2.1 水中天然有機物 4
2.1.1水中天然有機物之組成 4
2.1.2天然有機物之特性與影響 6
2.2 GFC分子量分離 9
2.2.1 GFC分離原理 9
2.2.2 GFC分離水中天然有機物 12
2.3 水處理薄膜程序 14
2.3.1薄膜程序於淨水工程上之應用 14
2.3.2薄膜使用上的限制與缺點 18
2.3.3影響薄膜效能之操作因子 20
2.3.4薄膜積垢之阻力分析 22
2.3.5增進薄膜效能之方法 27
2.4 外加電場掃流薄膜程序 30
2.4.1外加電場薄膜程序之原理與應用 30
2.4.2操作因子之探討 34

第三章 實驗設備與方法 37
3.1 實驗設計與流程 37
3.2 實驗步驟與方法 38
3.2.1天然有機物模擬水樣配製 38
3.2.2 GFC分離設備與實驗方法 38
3.2.3薄膜外加電場模組及實驗程序 41
3.3 水質分析設備與方法 45
3.3.1總有機碳濃度 45
3.3.2紫外光與可見光光譜儀器 46
3.4 薄膜表面分析儀器 47
3.4.1掃描式原子探測顯微鏡 47
3.4.2掃描式電子顯微鏡 48

第四章 結果與討論 49
4.1 腐植酸之分離與其特性 49
4.1.1 GFC分離腐植酸 49
4.1.2腐植酸分子量群組之特性 52
4.2 薄膜過濾通量與相關操作條件之探討 55
4.2.1薄膜壓差對於通量之影響 55
4.2.2分子量大小對於通量之影響 59
4.2.3外加電場對於通量之影響 65
4.3 腐植酸去除效率 79
4.3.1薄膜壓差對於去除率之影響 79
4.3.2分子量大小對於去除率之影響 81
4.4 薄膜積垢阻力分析 84
4.4.1薄膜壓差與分子量大小對於阻力之影響 85
4.4.2外加電場對於阻力分析之影響 87
第五章 結論與建議 90
5.1 結論 90
5.2 建議 92
第六章 參考文獻 93
附錄 97




江謝令涵,以外加電場輔助掃流過濾處理水中砷及天然有機物,國立台灣大學碩士論文,民國九十二年六月。
Amy, G.L., Thompson, J.M., Tan, L., Davis, M.K. and Krasner, S.W. (1990) Evaluation of THM precursor contribution from agricultural drains. J. Am Wat Works Assoc. 82(1), 57-64.
Amy, G.L., Sierka, R.A., James, B., David, P and Tan, L. (1992) Molecular size distributions of dissolved organic matter. J. Am Wat Works Assoc. 84(6), 67-75.
Aoustin, M., Schafer, A.I., Fane, A.G. and Waite, T.D. (2001) Ultrafiltration of natural organic matter. Sep. Purif. Technol. 22-23, 63-78.
Bowen, W.R., Calvo, J.I. and Hernández A. (1995) Steps of membrane blocking in flux decline protein microfiltration. J. Membrane Sci. 101, 153-165.
Bowen, R. and. Sabuni, H. A. (1991) Electrical enhanced membrane filtration at low cross flow velocities. Ind.Eng.Chem, Res.30 (7), 1573-1579.
Braghetta, A., Digiano, F.A. and Ball, W.P. (1997) Nanofiltration of natural organic matter: pH and ionic strength effects. J. Environ. Eng. 123(7), 628-641.
Carroll, T., King, S., Gray, S.R., Bolto, B.A. and Booker, N.A. (2000) The fouling of microfiltration membrane by NOM after coagulation treatment. Wat. Res. 34(11), 2861-2868.
Chen, V.; Fane, A.G.; Madaeni, S.; Wenten, I.G. (1997) Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation J. Membrane Sci. 125, 109-122.
Cheryan, M. (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Company, USA.
Cho, J., Amy, G. and Pellegrino J. (2000) Membrane filtration of natural organic matter: comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes. Desalination 127, 283-298.
Combe, C.,Molis, E., Lucas, P., Riley, R. and Clark, M.M. (1999) The effects of CA membrane properties on adsorptive fouling by humic acid. J. Membrane Sci.154, 73-87.
Crozes, G., Anselme, C., Mallevialle, J. (1993) Effect of adsorption of organic matter on fouling membranes. J. Membrane Sci. 84, 61-77.
Fan, L., Harris, J.L., Roddick, F.A. and Booker, N.A. (2001) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Wat. Res. 35(18), 4455-4463.
Fischer, L., (1980) Gel filtration chromatography. 2nd Edition, Elsevier/New York
Gary A. and Jaeweon, C., (1999) Interaction between natural organic water and membranes: rejection and fouling. Wat. Sci. Technol. 40 (9), 131-139.
Gordon, C.C.Y., Yang, T.Y. and Tsai, S.H. (2003) Crossflow electro-filtration of oxide-CMP wastewater. Wat. Res. 37, 785-792.
Henry, J.D., Lawler, L.F. and Kou, C.H. (1977) A solid/liquid separation process based on cross flow and electrofiltration. AIChE J .23, 851-859.
Huotari, H.M., Trägårdh, G. and Huisman, I.H. (1999a) Crossflow membrane filtration enhanced by an external dc electric field: a review. Trans IchemE. 77(A5), 461-467.
Jacangelo, J.G., Laine, J.M., Edward, W.C. and Samer, S.A. (1995) UF with pretreatment for removing DBP precursors. J. Am Wat Works Assoc.. 87(3), 100-112.
Jacangelo, J.G., Trussell, R.R. and Watson, M. (1997) Role of membrane technology in drinking water treatment in the United States. Desalination 113, 119-127.
Jagannadh, S.N. and Muralïdhara, H.S.(1996) Electrokinetics methods to control membrane fouling. Ind. Eng. Chem. Res. 35, 1133-1140.
Jones, K. L. and O’Melia, C. R. (2001) Ultrafiltration of protein and humic substances:effect of solution chemistry on fouling and flux decline. J. Membrane Sci. 193, 163-173.
Jucker, C. and Clark, M. M. (1994) Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J. Membrane Sci. 97, 37-52.
Larson, R.A. and Weber, E.J. (1994) Reaction mechanisms in environmental organic chemistry. Chaper 5. Boca Raton, FL, Lewis publisher.
Lee, S. and Cho, J. (2004) Comparison of ceramic and polymeric membranes for natural organic matter removal. Desalination 160, 223-232.
Lin, C.F., Huang, Y.J.and Hao, O.J. (1999) Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and pac treatment. Wat. Res. 33(5), 1252-1264.
Lin, C. F., Liu, S. H. and Hao, O. J. (2001) Effect of functional groups of humic substances on UF performance. Wat. Res. 35(10), 2395-2402.
Mehmet, K., Tanju, K., Andrew, W., James, E. K. (2002) Probing of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Res. 36, 3834-3848.
Moulik, S.P. (1971) Physical Aspects of electrofiltration. Environ. Sci. Technol. (9), 771-776.
Mulder, M. (1991) Basic principle of membrane technology. Kluwer Academic Publishers.
Nilson, J.A. and Digiano, F.A. (1996) Influence of NOM composition on nanofiltration. J. Am Wat Works Assoc. 88(5), 53-66.
Okada, K., Nagase, T., Ohinshe, Y., Nishihan, A.and Akagi, Y. (1997) Correlations of filtration flux enhanced by electric fields in crossflow microfiltration. J.Chemical Eng.J. 30(6), 1054-1058.
Oussedik, S., Belhocine, D., Grib, H., Lounici, H., Piron, D.L. and Mameri, N. (2000) Enhanced ultrafiltration of bovine serum albumin with pulsed electric field and fluidized activated alumina. Desalination 127(1), 59-68.
Peter, Z., Walter, K. and Gerd, B.(1998) Use of alternating electrical fields as anti-fouling strategy in ultralfiltration of biological suspensions-Introduction of a new experimental procedure for crossflow filtration. J.Membrane Sci. 142, 75-86.
Rao L, Choppin GR. (1995) Thermodynamic study of the complexation of neptunium(V) with humic acids. Radiochim Acta. 69, 87–95.
Ronald, L.M. and Patrick, M. (1986) Limitations in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 20, 904-911.
Ruohomaki, K., Vaisanen, P., Metsamuuronen S. and Kulovaara, M. (1998) Characterization and removal of humic substances in ultra- and nanofiltration. Desalination 118, 273-283.
Schmitt-Kopplin, P. Carrison, A.W., Perdue, E.M., Freitag, D. and Kettrup, A. (1998) Capillary electrophoresis in the analysis of humnic substances: Facts and artifacts. J.Chromatography A 807(1), 101-109.
Therman, E.M. (1986) Organic geochemistry of natural waters. Martinus Nijhoff/ Dr W. Junk Publishers.
Tracey, E. M. and Davis, R.H. (1994) Protein fouling of track-etched polycarconate microfiltration membrane. J. Colloid Interf. Sci. 167(1), 104-116.
Visvanathan C. and Aim, R. B. (1989) Application of an electric field for the reduction of particle and colloidal membrane fouling in crossflow microfiltration. Sep. Purif. Technol. 24(5-6), 383-398.
Wakeman, R.J. and Tarleton, E.S. (1986) Experiments using electricity to prevent fouling in membrane filtration. Filt. Sep.23, 174-176.
Wakeman, R.J. (1998) Electrically enhanced microfiltration of albumin suspension. Trans IChemE, 76, Part C 53-59.
Weber, K. and Stahl, W. (2002) Improvement of filtration kinetics by pressure electrifiltration. Sep. Purif. Technol. 26, 69-80.
Weigert, T., Altmann, J. and Ripperger, S. (1999) Crossfow electrofltration in pilot scale. J.Membrane Sci. 159, 253-262.
Weng, Yu-Hsiang and Li, Kung-Cheh (2002) Electrically enhanced crossflow membrane filtration for treatment of water containing humic acid: a preliminary study. The 12th Joint KAIST-KYUTU-NTU-NUS Symposium on Environmental Engineering, June 26-29, 2002, Taipei, Taiwan, R.O.C., 95-103.
Wiesner, M.R., Hackney, J., Sethi, Jacangelo, J.G. and Laîné, J.-M. (1994) Cost estimates for membrane filtration and conventional treatment. J. Am Wat Works Assoc.. 86 (12), 33-41.
Yuan, W. and Zynedy, A.L. (2000) Humic acid fouling during ultrafiltration . Environ. Sci. Technol. 34(23), 5034-5050.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔