(3.210.184.142) 您好!臺灣時間:2021/05/09 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃怡華
研究生(外文):Yi-Hua Huang
論文名稱:以超重力臭氧反應器處理含萘及界面活性劑水溶液之研究
論文名稱(外文):The Study on Ozonation of Naphthalene and Surfactants Containing Solutions with High-Gravity Rotating Packed Bed
指導教授:張慶源張慶源引用關係
指導教授(外文):Ching-Yuan Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:138
中文關鍵詞:超重力旋轉填充床臭氧多環芳香族碳氫化合物
外文關鍵詞:high-gravity rotating packed bednapthaleneozo
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於以臭氧結合超重力旋轉填充床氣液接觸器(HGRPB)處理界面活性劑含萘(NAP)之水溶液,並探討界面活性劑對於臭氧質傳及氧化特性之影響。
本實驗於半批次液體循環式之操作下,進行界面活性劑之臭氧化實驗,實驗結果顯示SDS不會與臭氧反應,而Brij 30會與臭氧進行親電子之反應,但兩者皆不容易被臭氧礦化成二氧化碳及水。
半批次臭氧質量傳輸實驗中,SDS之濃度由0.00164 增加至0.1M,溶解性臭氧濃度由2.32 下降至0.49 mg/L。SDS濃度未達臨界微胞濃度(CMC),提高SDS濃度會使溶解性臭氧濃度下降其下降趨勢較SDS濃度達大於等於CMC值之溶解性臭氧濃度大。當SDS之濃度未達CMC值,臭氧於水相中之自我降解常數與界面活性劑之濃度之關係式為 。
超重力系統連續式NAP之氣提實驗中,添加界面活性劑之氣提效果較差,而界面活性劑濃度達CMC值時,NAP之氣提效率與界面活性劑之濃度(大於CMC)及NAP之濃度關係不明顯,其氣提之效率為4-10%,變化不大,推測僅與氣體之進流流量有關。
超重力系統連續式NAP之臭氧化實驗中,不同之界面活性劑水溶液中溶解相同劑量之NAP之臭氧化實驗,溶解於SDS水溶液中之NAP較溶解於Brij 30水溶液較易臭氧化。而不同Brij 30濃度下溶化相同之NAP量之臭氧化實驗,當Brij 30 濃度100 mg/L增加至1000 mg/L,臭氧對NAP之去除率由82.26變為36.67%。相同Brij 30濃度下溶化不同NAP的量之臭氧化實驗,當NAP之濃度由10 mg/L增加至100 mg/L,NAP之去除率由98.35%下降至82.26%。由於HGRPB填充床之體積過小,導致臭氧與NAP之接觸時間太短,臭氧與NAP之反應不完全,且因Brij 30會與臭氧進行反應,而與NAP競爭臭氧,因此當Brij 30或NAP之濃度提高,NAP臭氧化之去除率降低。
將經臭氧化兩小時之界面活性劑SDS及Brij 30溶液回收再增溶NAP之實驗,100 mg/L 之SDS 仍可溶解35 mg/L之NAP,1000 mg/L 之 Brij 30仍可溶化120 mg/L之NAP,說明界面活性劑有再回收使用之可能性。
The objective of this study is to examine the ozonation of naphthalene (NAP) and surfactants with high-gravity rotating packed bed (HGRPB). Furthermore, the influences of surfactants on mass transfer and the ozonation performance were investigated in this study.
The HGRPB for semi-batch operation with recycle liquid is employed to the ozonation of surfactants in this part of experiment. The results showed that sodium dodecylsulfate (SDS) reacted with ozone insignificantly but polyoxyethylene (4) lauryl ether (Brij 30), which reacted with ozone via the electrophilic addition reaction. However, it is difficult to mineralize both SDS and Brij 30 into carbon dioxide (CO2) and water (H2O) by means of ozonation. Regarding the mass transfer experiments, the results showed that dissolved liquid ozone increased from 2.32 to 0.49 mg/L with the decrease of the SDS concentration from 0.00164 to 0.1M. The self-decomposition rate constant of ozone depended on the concentration of SDS in aqueous phase is .
The results of HGRPB of continuous flow operation to strip naphthalene from aqueous solution showed that the efficiency of the stripping is better in deionized water than in surfactants-containing solution (above CMC). When the concentration of surfactants is above CMC, the concentrations of the surfactant and NAP affect the removal efficiency of stripping. The stripping efficiency may be related to the gas flow rate. The efficiency of ozonation of NAP dissolving in the SDS solution is better than that in the Brij 30 solution with same concentration of NAP. The removal efficiencies of NAP decreased from 98.3 to 82.36 % as the concentration of Brij 30 was from 100 to 1000 mg/L. The concentration of NAP increased from 10 to 100mg/L, while the efficiency of ozonation decrease from 82.26 to 35.67%. The contacting volume of HGRPB is 185 mL, in which the contact time is too short for ozone to completely react with NAP. Due to the comsumption of ozone by Brij 30, the higher concentrations of Brij 30 and NAP decreased the removal efficiency of NAP.
The surfactant-containing solution after ozonation and can further re-dissolve NAP of 35 (SDS of 100 mg/L) and 120 mg/L (Brij 30 of 1000 mg/L), respectively. Therefore, it is feasible to reuse the surfactant-containing solutions after ozonation.
目錄

中文摘要 ------------------------------------------------------------------- Ⅰ
英文摘要 ------------------------------------------------------------------ Ⅲ
目錄 ------------------------------------------------------------------------ Ⅴ
表目錄 -------------------------------------------------------------------- X
圖目錄 ----------------------------------------------------- XII
符號說明 ---------------------------------------------------------------- XVI

第一章 緒論 -------------------------------------------------------------- 1
1.1 研究緣起 ---------------------------------------------------------- 1
1.2 研究目的 ---------------------------------------------------------- 3

第二章 文獻回顧 -------------------------------------------------------- 6
2.1 環芳香族碳氫化合物之基本性質及污染現況 ------------- 6
2.1.1 環芳香族碳氫化合物(PAHs)之之物理化學特性 -- 6
2.1.2 PAHs之毒理特性 -------------------------------------- 7
2.1.3 PAHs在環境中之分佈 ------------------------- 7
2.1.4 超重力技術之特點及應用 --------------------------- 10
2.1.5 相關法規之規定 ----------------------------------------- 12
2.2界面活性劑之定義與簡介 ------------------------------------- 13
2.2.1界面活性劑的基本性質 --------------------------------- 13
2.2.2界面活性劑微胞相及水相之關係 ---------------------- 18
2.2.3界面活性劑對氧氣質量傳送之影響 ------------------ 20
2.2.4面活性劑在污染整治的應用實例 --------------------- 21
2.3 臭氧之基本性質與反應機制 ---------------------------------- 23
2.3.1 臭氧之自解 ----------------------------------------------- 23
2.3.2 臭氧與有機物之反應 ---------------------------------- 27
2.3.3 萘與臭氧之反應 ----------------------------------------- 31
2.3.4 臭氧與界面活性劑之反應 ----------------------------- 34
2.4超重力旋轉填充床之原理及應用 ---------------------------- 37
2.4.1 超重力工程技術之發展 -------------------------------- 37
2.4.2 超重力旋轉填充床氣液接觸氣之構造與原理 ------ 38
2.4.3 超重力旋轉填充床氣液接觸器之特性及其應用 --- 42
2.4.3.1 壓降之影響 ------------------------------------ 42
2.4.3.2 溢流現象 --------------------------------------- 42
2.4.3.3 液膜質量傳送係數 --------------------------- 43
2.4.3.4 氣膜質量傳送係數 --------------------------- 43
2.4.4 超重力旋轉填充床(HGRPB)氣液接觸器之應用 --- 44
第三章 實驗設備與方法 ---------------------------------------------- 46
3.1 實驗系統設備簡介 --------------------------------------------- 46
3.2 實驗儀器與藥品 ------------------------------------------------ 52
3.2.1 實驗儀器 ------------------------------------------------- 52
3.2.2 實驗藥品------------------------------------------------------ 55
3.3 實驗分析方法 ---------------------------------------------------- 56
3.3.1 氣相臭氧分析方法 --------------------------------- 56
3.3.2 液相臭氧分析方法 ----------------------------------- 57
3.3.3 總有機碳(Total Organic Carbon, TOC)實驗 ------- 59
3.3.4 高效率液相層析儀(high performance liquid chromatography, HPLC)實驗 ------------------------- 60
3.3.4.1 NAP原始物種之分析 ----------------------- 60
3.3.4.2 Brij 30之分析 -------------------------- 60
3.3.5 表面張力之分析 -------------------------------------- 61
3.4 前置實驗 -------------------------------------------------------- 61
3.4.1 氣體流量校正實驗 ------------------------------------- 61
3.4.2 液相臭氧分析儀校正實驗(外部校正) ------------- 62
3.5 界面活性劑對NAP之增溶效應實驗 ----------------------- 62
3.6 連續式操作之NAP氣提實驗 -------------------------------- 62
3.7 連續式操作之NAP臭氧化之實驗 -------------------------- 63
3.8 半批次/液體循環式操作之臭氧質量傳送試驗 ----------- 64
3.9 半批次之臭氧質量傳送實驗 ---------------------------------- 65

第四章 結果與討論 ----------------------------------------------------- 67
4.1界面活性劑之背景實驗 ------------------------------------- 67
4.1.1界面活性劑對NAP之增溶效應 ------------------- 67
4.1.2 界面活性劑臭氧化之實驗 ------------------------------ 71
4.1.2.1 SDS臭氧化分解 ----------------------------- 71
4.1.2.2 Brij 30臭氧化分解實驗 ------------------- 75
4.2 臭氧於界面活性劑中之行為特性 ---------------------------- 82
4.2.1 SDS水溶液之液體表面質量傳輸 ------------------- 82
4.2.2界面活性劑溶液中臭氧自我降解常數及溶質分佈係數--------------------------------------------------------------- 88
4.3 NAP之氣提現象 ------------------------------------------------- 99
4.4 NAP臭氧化實驗 ------------------------------------------------ 107
4.5 界面活性劑臭氧化後對NAP之再增溶效應 -------------- 120
第五章 結論與建議 --------------------------------------------------- 121
5.1結論 ----------------------------------------------------------------- 121
5.2 建議 --------------------------------------------------------------- 123

參考文獻 ------------------------------------------------------------------ 124

附錄 ------------------------------------------------------------------------ 132
A-1 氣體流量校正曲線 ---------------------------------------------- 133
A-2液相臭氧分析儀校正 ------------------------------------------- 134
A-3 檢量線數據 ------------------------------------------------------- 135
A-4 NAP之HPLC分析圖譜 --------------------------------------- 136
A-5 Brij 30及actone 之全波長掃瞄 ----------------------------- 136
A-6 界面活性劑水相中臭氧自我降解常數之線性迴歸 ------- 137

表目錄
List of Tables

Table 2.1 The distribution of PAHs in the soil of tollbooth near the high way. 9
Table 2.2 Basic physicochemical properties of naphthalene. 11
Table 2.3 Characteristics of surfactants used in this study. 17
Table 2.4 The half-life of ozone in water in different pH value. 25
Table 2.5 Typical initiator, promoters, and inhibitors for decomposition of ozone by radical-type chain reaction. 30
Table 2.6 Comparison of conventional packed bed and high-gravity rotating packed bed gas-liquid contactors. 40
Table 3.1 Specification of HGRPB contactors used in this study. 48
Table 4.1 Variation of total organic carbon (TOC) and surface tension (ST) in ozonation of SDS. 72
Table 4.2 Variation of total organic carbon (TOC) and surface tension (ST) after ozonation with recycle flow. 78
Table 4.3 Variation of total organic carbon (CTOC) in different initial concentration of Brij 30 in the ozonation of Brij 30 with continuous flow. 79
Table 4.4 Variation of dissolved ozone in different concentration of ozone and SDS with semi-batch operation. 85
Table4.5 The mass transfer constant (kLa) of ozone in different concentration of SDS with semi-batch operation. 86
Table 4.6 Volume fractions of the micelles in the solution for different concentrations of SDS. 92
Table 4.7 The self-decomposition reaction rate constant (kd,w)of ozone in different concentration (below CMC) of SDS with semi-batch operation. 93
Table 4.8 The relationship of kd,w and Km in different concentraction (above CMC) of SDS and ozone. 97
Table 4.9 The effects in different operation conditions by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 100
Table 4.10 The effects in different operation conditions by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 108

圖目錄
List of Figure

Figure 1.1 Schematic diagram of HGRPB combine ozone treat the soil and groundwater was polluted by PAHs. 4
Figure 1.2 Flow chart for this study. 5
Figure 2.1 Schematic diagram of the soluble and surface tension profile
of surfactant. 15
Figure 2.2 The structure of sodium dodecylsulfate (SDS). 16
Figure 2.3 The structure of polyoxyethylene (4) lauryl ether (Brij 30). 16
Figure 2.4 Reaction mechanisms for ozone decomposition process. 26
Figure 2.5 The extreme forms of resonance structure in ozone molecules. 28
Figure 2.6 Reactions of OH.radical with an organic pollutant. 29
Figure 2.7 Ozonation pathway of naphthalene: the case of initial attack by ozone dipolar cycloaddition on the 1,2 bond of naphthalene. 32
Figure 2.8 Ozonation pathway of naphthalene: other possible initial attack. 33
Figure 2.9 Schematic of ozonation of ethylene glycmono-n-octyletherand. 36
Figure 2.10 Description of high-gravity rotating packed-bed gas-liquid contactor. 41
Figure 3.1 The experimental apparatus sketch system A (continuous flow). 49
Figure 3.2 Experimental apparatus for ozonation: system B (semi-batch with recycled liquid; ozone feeded in HGRPB). 50
Figure 3.3 The experimental apparatus sketch (Semi-batch). 51
Figure 4.1 Enhanced solubilization of Naphthalene in liquid phase at various concentration of SDS. 69
Figure 4.2 Variations of dissolved ozone(CAlb,t)and ORP of deionized water and SDS aqueous solution with time in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 74
Figure 4.3 HPLC chromatogram for Brij 30 after ozonation in high-gravity rotating packed bed gas-liquid contactor with recycle flow. 76
Figure 4.4 HPLC chromatogram for Brij 30 after ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 77
Figure 4.5 Possible pathways of ozonation of Brij 30. 81
Figure 4.6 Schematic diagram of experimental system for the mass transfer of ozone. 87
Figure 4.7 Variation of dissolved ozone in different concentration of SDS and ozone at N = 400 rpm with semi-batch operation. 89
Figure 4.8 Log reaction of ozone self-decomposition constant (kd,w-0.000145) versus log concentration of SDS (Csur.). kd,w = 0.000145 + aCsurb, slope = b, intercept = loga Y = 0.6738X – 0.3002, R2 = 0.9755. 94
Figure 4.9 Schematic diagram of ozone self-decomposition in micelle. 96
Figure 4.10 The effects of various NAP concentration by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 102
Figure 4.11 The effects of various Brij 30 concentrations on the removal of NAP by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 10 mg/L. 103
Figure 4.12 The effects of various Brij 30 concentrations on the removal of NAP by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 50 mg/L. 104
Figure 4.13 The diagram of surfactant by stripping. 106
Figure 4.14 The effects of various ozone concentration by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 109
Figure 4.15 Variation 0f dissolved ozone(θALb,t) with time in different concentration of surfactant in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 111
Figure 4.16 The effects of various NAP concentration by ozonation in high-gravity rotating packed bed gas-liquid with continuous flow. 112
Figure 4.17 Variation 0f ORP with time in different concentration of naphthalene in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 114
Figure 4.18 The effects of various Brij 30 concentrations on the removal of NAP by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 10 mg/L. 115
Figure 4.19 The effects of various Brij 30 concentrations on the removal of NAP by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 50 mg/L. 116
Figure 4.20 Variation 0f ORP with time in different concentration of Brij 30 in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CBrij 30 = 100 mg/L. 118
Figure 4.21 Variation 0f ORP with time in different concentration of Brij 30 in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CBrij 30 = 300 mg/L. 119
1.Andelman, L. and M. J. Suess, “Polynuclear Aromatic Hydrocarbons in the Water Environment,” Bull. W.H.O., 43, 479 (1970).
2.Beltrán, F. J., J. F. García-Araya and P. M. Álvarez, “Sodium Dodecylbenzenesulfonate Removal from Water and Wastewater. 1. Kinetics of Decomposition by Ozonation,” Ind. Eng. Chem. Res., 39, 2214 (2000).
3.Beltrán, F. J., J. F. García-Araya and P. M. Álvarez, “Sodium Dodecylbenzenesulfonate Removal from Water and Wastewater. 2. Kinetics of the Integrated Ozone-Activated Sludge System,” Ind. Eng. Chem. Res., 39, 2221 (2000).
4.Blagojevich, R. R. and J. R. Lumpkin, “Polycyclic Aromatic Hydrocarbons (PAHs),” Illinois Department of Public Health, Division of Environmental Health, http://www.idph.state.il.us/envhealth/factsheets/polycyclicaromatichydrocarbons.htm (2002).
5.Brambilla, A. M., L. Calvosa, A. Monteverdi, S. Polesello and B. Rindone, “Ozone Oxidation of Polyethoxylated Alcohols,” Water Research, 27, 1313 (1993).
6.Brambilla, A., E. Bolzacchini, M. Orlandi, S. Polesello and B. Rindone, “Reactivity of Two Models of Non-ionic Surfactants with Ozone,” Water Research, 31, 1839 (1997).
7.Cerniglia, C. E. “Biodegradation of Polycyclic Aromatic Hydrocarbons,” Biodegradation, 3, 351 (1992).
8.Chen, B. L. and L. Z. Zhu, “Partition of Polycyclic Aromatic Hydrocarbons on Organobentonites from Water,” Journal of Environmental Sciences, 13, 129 (2001).
9.Chen, G., K., A. Strevett and B. A. Vanegas, “Naphthalene, Phenanthrene and Surfactant Biodegradation,”Biodegradation, 12, 433 (2001).
10.Christensen, E. R. and X. Zhang, “Sources of Polycyclic Aromatic Hydrocarbons to Lake Michigan Determined from Sedimentary Records,” Environ. Sci. Technol., 27, 139 (1993).
11.Doong, R., W. Lei, T. Chen, C. Lee, J. Chen and W. Chang, “Effect of Anionic and Nonionic Surfactants on Sorption and Micellar Solubilization of Monocyclic Aromatic Compounds,” Water Science and Technology, 34, 327 (1996).
12.Edwards, D. A., R. G. Luthy and Z. Liu, “Solubilization of Polycyclic Aromatic Hydrocarbons in Micellar Nonionic Surfactant Solution,” Environ. Sci. Technol., 25, 127 (1991).
13.Gabr, M., A. R. Thomas, E. E. Cook and K. Shoblom, “Kinetics of Naphthalene Removal from Sand Kaolinite/Sand Soils Using SDS Surfactant,” Proceedings of the International Offshore and Polar Engineering Conference, 1, 402 (1996).
14.Gabr, M. A., J. Chen and R. Thomas, “Soil Clogging During Surfactant-enhanced Flushing of Naphthalene-contaminated Sand-kaolinite,” Can. J. Geotech. /Rev. Can. Geotech. 35, 976 (1998).
15.Gillot, S., S. Capela and A. Heduit, “Effect of Horizontal Flow on Oxygen Transfer in Clean Water and in Clean Water with Surfactants,” Water Research, 34, 678 (2000).
16.Guo, K., F. Guo, Y. Feng, J. Chen, and C. Zheng and N. C. Gardner,“Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-Bed Contactor,” Chemical Engineering Science, 55, 1699 (2000).
17.Huang, H. and W. Lee, “Simultaneous Removal of Naphthalene and Sulfur Dioxide Using Surfactant,” J. Environmental Engineering, 128, 60 (2002).
18.Huang, T. C. and D. H. Chen, “Kinetics of Ozone Decomposition in Aqueous Solution with and without Ultraviolet Radiation,” J. Chin. I. Ch. E., 24, 207 (1993).
19.Hwang, H. and M. K. Stenstrom, “Evaluation of Fine-Bubble Alpha Factors in Near Full-Scale Equipment,” JWPCF, 57, 1142 (1984).
20.Jones, K. C., J. A. Stratford, K. S. Waterhouse and N. B. Vogt, “Organic Contaminants in Welsh Soils: Polynuclear Aromatic Hydrocarbons,” Environ. Sci. Technol., 23, 540 (1989).
21.Kelleher, T. and J. R. Fair, “Distillation Studies in a High-Gravity Contactor,” Ind. Eng. Chem. Res., 35, 4646 (1996).
22.Keyvani, M. and N. C. Gardner, “Operating Characteristics of Rotating Beds,” Chem. Eng. Progress, 85, 48 (1989).
23.Kile, D. E. and C. T. Chiou, “Water Solubility Enhancements of DDT and Trichlorobenzene by Some Surfactants below and above the Critical Micelle Concentration,” Environmental Science and Technology, 23, 832 (1989).
24.Kim, D. K., Y. Zhang, J. Kehr, T. Klason, B. Bjelke and M. Muhammed, “Characterization and MRI Study of Surfactant-Coated Superparamagnetic Nanoparticles Administered into the Rat Brain,” Journal of Magnetism and Magnetic Materials, 225, 256 (2001).
25.Kim, I. S., J. S. Park and K. W. Kim, “Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Using Nonionic Surfactants in Soil Slurry,” Applied Geochemistry, 16, 1419 (2001).
26.Laha, S. and R. G. Luthy, “Effects of Nonionic Surfactants on the Solubilization and Mineralization of Phenanthrene in Soil-Water Systems,” Biotechnology and Bioengineering, 40, 1367 (1992).
27.Langlais, B., A. R. David and R. B. Deborah, Ozone in Water Treatment: Application and Engineering, Lewis Publishers Inc., Michigan, U.S.A (1991).
28.Legube, B., S. Guyon, H. Sugimitsu and M. Dore, “Ozonation of Naphthalene in Aqueous Solution - I. Ozone Consumption and Ozonation Products,” Water Research, 20, 197 (1986).
29.Liu, H. S., C. C. Lin, S. C. Wu and H. W. Hsu, “Characteristic of a Rotating Packed Bed,” Ind. Eng. Chem. Res., 35, 3590 (1996).
30.Manoli, E. and C. Samara, “Occurrence and Mass Balance of Polycyclic Aromatic Hydrocarbons in the Thessaloniki Sewage Treatment Plant,” Journal of Environmental Quality, 28, 176 (1999).
31.Masuyama, A., S. Yamakawa and N. Masatomo, “Ozonolyses of Cyclopent-1-enylbenzenes in Micellar Aqueous Solution,” Langmuir, 17, 7505 (2001).
32.Matheson, I. B. C. and A. D. J. R. King, “Solubility of Gases in Micellar Solutions,”J. Colloid Interface Sci. 66, 464 (1978).
33.McCabe, W. L., J. C. Smith and P. Harriott, Unit Operations of Chemistry Engineering, McGraw-Hill, 5th ed., New York, NY (1994).
34.Masten, S. J. and S. H. R. Davies, “Use of Ozonation to Degrade Organic Contaminants in Wastewaters,” Environmental Science and Technology, 28, 180 (1994).
35.Munjal, S., M. P. Dudukovic and P. Ramachandran, “Mass-transfer in Rotating Packed Beds – I. Development of Gas-liquid and Liquid-gas Mass-transfer Correlations,” Chem. Eng. Sci., 44, 2245 (1989a).
36.Munjal, S., M. P. Dudukovic and P. Ramachandran, “Mass-transfer in Rotating Packed Beds – II. Experimental Results and Comparison with Theory and Gravity Flow,” Chem. Eng. Sci., 44, 2257 (1989b).
37. Nam, K. and J. J. Kukor, “Combined Ozonation and Biodegradation for Remediation of Mixtures of Polycyclic Aromatic Hydrocarbons in Soil,” Biodegradation, 11, 1 (1994).
38.Park, S. K. and A. R. Bielefeldt, “Aqueous Chemistry and Interactive Effects on Non-ionic Surfactant and Pentachlorophenol Sorption to Soil,” Water Research, 37, 4663 (2003).
39.Pitts, J. N., J. K. A. V. Cauwenberghe, D. Grosjean, J. P. Schmid, D. R. Fitz, W. L. Belser, J. G. B. Kundson and P. M. Hynds, “Atmospheric Reactions of Polycyclic Aromatic Hydrocarbons: Facile Formation of Mutagenic Nitro Dericatives,”Science, 202, 515 (1978).
40.Ramshaw, C., “Higee Distillation - An Example of Process Intensification,”Chem. Eng., 13 (1983).
41.Ramshaw, C. and R. H. Mallinso, Mass Transfer Process, United States Patent 4383255 (1981).
42.Shiau, B. J., J. H. Harwell and J. F. Scamehorn, “Precipitation of Mixtures of Anionic and Cationic Surfactants. III. Effect of Added Nonionic Surfactant,” Journal of Colloid and Interface Science, 167, 332 (1994).
43.Shimadzu Corporation, “Analysis of Cationic/Nonionic Surfactants Using LC-MS,” LC-MS Application Data Sheet, vol. 41 (2000).
44.Singh, S. P., J. H. Wilson, R. M. Counce, J. F. V. Fisher, H. L. Jennings, A. J. Lucero, G. D. Reed, R. A. Ashworth and M. G. Elliott, “Removal of Volatile Organic Compounds from Groundwater Using a Rotary Air Stripper,” Ind. Eng. Chem. Res., 31, 574 (1992).
45.Staechlin, J., R. E. Buhler and J. Hoigné, “Ozone Decomposition in Water Studied by Pulse Radiolysis, 2. OH and HO4 as Chain Intermediates,” J. Phys. Chem., 88, 5999 (1984).
46.Todorov, P. D., P. A. Kralchevsky, N. D. Denkov, G. Broze and A. Mehreteab, “Kinetics of Solubilization of n-Decane and Benzene by Micellar Solutions of Sodium Dodecyl Sulfate,” J. Colloid Interface Sci., 245, 371 (2002).
47.Wagner, M. and H. J. Pöpel, “Surface Active Agents and Their Influence on Oxygen Transfer,” Water Science and Technology, 34, 249 (1996).
48.Wang, P. C., H. B. Matta and C. H. Kuo, “Kinetics of Ozonation of Naphthalene and Anthracene,” J. Chin. I. Ch. E., 22, 365 (1991).
49.Yamanouchi, T., S. Komura and K. Yagi, “Serum Lipid Peroxidelevels of Albino rats Administered Naphthalene,” Biochem. Int., 13, 1 (1986).
50.You, J. H., P. C. Chiang, K. T. Chang and S. C. Chang, “Polycylic Aromatic Hydrocarbons (PAHs) and Mutagenicity of Soot Particulates in Air Emissions from the Two-Stage Incineration of Polystyrene,” J. Hazardous Materials, 36, 1 (1994).
51.Zander, M., Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons, Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc., New York, 1 ed. (1983).
52.黃冠良及王一雄,「台灣地區土壤中有機毒性物質之調查-有機毒化物在環境中之流佈及對環境影響評估 (多環芳香烴化合物部分) 」,行政院環保署研究計畫編號EPA 80-H103-09-19(1991)。
53.經濟部工業局,「高級氧化程序在廢水處理上的應用」,工業污染技術手冊(1993)。
54.林佳璋,「旋轉填充槽之特性探討」,國立台灣大學化學工程學研究所碩士論文(1995)。
55.申永輝,「界活性劑對Pyrene在土壤/水溶液兩相間分佈之影響」, J. Chin. Colloid & Interface Soc.,19,79(1996)。
56.顏美秀,「界面活性劑在土壤/地下水系統中微胞形成穩定性之探討」,國立屏東科技大學碩士論文(1996)。
57.董瑞安及雷文剛,「陰離子及非離子界面活性劑對單環芳香烴化合物之吸持及微胞增溶效應」,中國環境工程學刊,7,219 (1997)。
58.洪彰懋、陳瑞仁、李文智、陳飛良、蔡祈政、高茂仁及鐘進忠,「大氣中多環芳香烴之濕沈降」,第十六屆空氣污染控制研討會論文集(1999)。
59.蘇恆弘,「以過氧化氫/臭氧程序處理2-氯酚水溶液反應及臭氧質傳行為之研究」,國立台灣科技大學化學工程學研究所碩士論文(1999)。
60.陳修斌,「氣泡形成對臭氧質傳及其對含2-氯酚溶液分解反應行為之影響」,國立台灣科技大學化學工程學研究所碩士論文(2000)。
61.林佳璋,「高重力場之研究」,國立台灣大學化學工程學研究所博士論文(2000)。
62.黃世峰,「以臭氧/紫外光去除印刷電路板電鍍液中亞甲基二奈磺酸鈉之研究」,國立台灣大學環境工程學研究所碩士論文(2001)。
63.葉桂君、彭素蘭、許益源及陳庭堅,「運用於淋洗地下水層含氯溶劑之界面活性劑篩選」,屏東科技大學學報,10,201(2001)。
64.張慶源及於幼華,「高級氧化技術處理工業廢水之應用研究」,經濟部業界科專計畫(2002)。
65.陳辰菖,「以臭氧/紫外光去除印刷電路板電鍍液中亞甲基2-四氫間硫氮茂硫酮之研究」,國立台灣大學環境工程學研究所碩士論文(2002)。
66.林佳璋及劉文宗,「超重力技術的原理與進展」,化工資訊,16,工業技術研究院資訊中心(2003)。
67.蘇維翎,「超重力旋轉填充床之特性探討及其應用於反應性染料之臭氧化研究」,國立台灣大學化學工程學研究所碩士論文(2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.王明嘉,1983,「版面設計的藍圖:怎樣動手作編排(上)」,雄獅美術,Vol.153,pp.152-155。
2. 2.王明嘉,1984,「版面設計的藍圖:怎樣動手作編排(下)」,雄獅美術,Vol.155,pp.131-135。
3. 3.王明嘉,1983,「版面設計上的文字功用:文字是傳達觀念的視覺形象」,雄獅美術,Vol.151,pp.112-116。
4. 6.石素錦,1992,「從認知心理學談兒童英語教學」,北師語文教育通訊,pp.10-22
5. 7.朱文禎/林淳美,1995,「互動式多媒體電腦輔助學習教材之設計探討-以外語學習為例」,高苑學報,Vol.4,pp.259-263。
6. 9.宋倩如,2000,「設計互動式超媒體人機介面之文獻探討」,中學教育學報,Vol.7,pp.201-217。
7. 12.陳怡靜、計惠卿,1997,育樂式課程軟體之遊戲式學習情境,視聽教育雙月刊,台北,Vol.39,pp.24-33。
8. 13.曹素香,1987,兒童英語教學之我見,國民教育,台北,pp.20-22。
9. 14.黃燦遂,1990,談國內的兒童英語教育,英語教學,台北,pp.4-7。
10. 15.葉潔宇,1994,「兒童英語的教室經營」,英語教學,Vol.19,pp.76-83。
11. 16.楊繼斌,1986,「互動式教學科技在公共圖書館教育功能之應用」,書苑季刊,Vol.29,pp.22-31。
12. 17.楊叔卿,1993,「互動式教學多媒體之探討—兼談清大互動式影碟系統英語教材之設計研發(上)」,教學科技與媒體,pp.49-55。
13. 18.楊叔卿,1994,「互動式教學多媒體之探討—兼談清大互動式影碟系統 英語教材之設計研發(下)」,教學科技與媒體,pp.49-55。
14. 19.殷彩鳳,1999,「教材選對,效果加倍—談選用英語教材的基本原則」,敦煌英語教學雜誌,Vol.21,pp.15-17。
15. 21.鍾聿琳、黃衍文,1999,「媒體互動式光碟教學對認知成就及學習態度影響之初探」,民意研究季刊,台北。
 
系統版面圖檔 系統版面圖檔