(3.238.96.184) 您好!臺灣時間:2021/05/18 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳信宏
研究生(外文):Hsin-Hung Chen
論文名稱:作業場所電力頻磁場屏蔽控制之探討研究
論文名稱(外文):Study on Shielding of Power-Frequency Magnetic Field in Workplace
指導教授:林宜長林宜長引用關係
指導教授(外文):Yi-Chang Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:160
中文關鍵詞:60 Hz磁場屏蔽電力頻磁場遮蔽效果
外文關鍵詞:power frequency magnetic fieldsshielding60 Hz
相關次數:
  • 被引用被引用:2
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,一般家庭、工廠、辦公室及電器設備皆使用60 Hz交流電力,本研究的目的是利用60 Hz電力系統所產生的電力頻磁場,並針對電力頻磁場控制的成效進行探討,以避免可能造成健康上的危害。
電力頻磁場最主要的來源與發電、輸電及用電設備有關,其中磁通密度會受到距離、電流以及輸配電線佈設等因素所影響。目前電力頻磁場的控制已知有許多種方法,包括暴露距離增加、導線空間佈設及方向排列及屏蔽等。而本研究主要探討屏蔽方法對磁場遮蔽的改善情形,方法是以導電材料(純銅板、純鋁板)及導磁材料(矽鋼板)當做屏蔽材料,探討對交流電電線所模擬產生源的磁場之遮蔽效果,另外一方面進行一般工廠,營業與辦公場所現場測量及分析,並就其後者之高磁通密度工作場所,以平板狀屏蔽材料進行磁場改善及探討改善後的遮蔽效果。
由屏蔽實驗的結果得知:(1)以平板狀屏蔽材料在測量高度為5cm的長直導線進行磁場屏蔽測試,則屏蔽材料之遮蔽效果大小依序為:方向性導磁矽鋼板 > 非方向性導磁矽鋼板 > 導電性銅板 > 導電性鋁板。(2)方向性導磁矽鋼板擺放應將金屬條紋與磁通密度方向成垂直,可得較佳遮蔽效果。(3)以長直導線及線圈為磁場產生源,且磁通密度約為90 mG時,當採用不同堆疊厚度的鋁板在固定厚度矽鋼板上,其遮蔽效果(S.E.值)隨著堆疊厚度而增加,當堆疊厚度臨界7 mm後,再增加堆疊時則遮蔽效果沒有明顯增加。(4)以電焊方式來處理接縫,雖可改善漏磁現象,但會造成接縫處隆起,不利於屏蔽施工,可考慮以堆疊方式將上下各層接縫處不要重疊。(5)在材料面積約略相同下,圓筒狀導磁材料之遮蔽效果大於正方形筒狀、雙凹形、凹形、平板狀。(6)從環境調查及實場改善結果得知:1. 勞工作業場所如有使用較大的設備如電焊機、變壓器、大型馬達、配電盤及整流器等,其磁通密度會較大,有時甚高達數百mG。2. 一般營業及辦公場所其磁通密度不大,但如果設置地點正好位於電氣室樓上時,則環境的磁通密度會高達幾十mG。3. 在辦公場所之實場改善方面,如可以用平板狀屏蔽材料在地板上進行屏蔽,則將可以以較少施工時間和成本,達到遮蔽效果,如以本研究的兩個實場改善案為例,其遮蔽效果均可達到14 dB以上。


In Taiwan, it was common to introduce 60 Hz alternating current in most places such as households, offices and electrical equipments; this study aimed to investigate on the sources of power frequency magnetic fields and the efficiency of controlling power frequency magnetic fields, in order to avoid detrimental effects of power frequency magnetic fields.
Wherever electricity is generated, transmitted or used, power frequency magnetic fields are created. Magnetic flux density is influenced by multiple factors such as distance, electric current and the configuration of power transmission lines, etc. There are various methods to control power frequency magnetic fields, including the extension of distance and space, direction arrangement and shielding, etc.
This study attempted to probe for the control parameters of power frequency magnetic fields while manipulating the shielding methods. In addition, we sampled in workplace and evaluated the shielding efficiency of various materials in high magnetic field sources.
Results:
(1) When testing plane materials in magnetic fields generated by long electric line, the order of intensity of shielding effectiveness is the oriented silicon steel > the non-oriented silicon steel > the copper material > the aluminum material.
(2) The shielding effectiveness is the highest when the oriented silicon steel is placed perpendicularly to the axis of magnetic flux density.
(3) While using long electric line and loop as the magnetic field source with a magnetic flux density around 90 mG, the thicker the aluminum plate (not exceeding 7 mm), the higher the shielding effectiveness.
(4) It could be considered to avoid the magnetic leakage using superimposition of shielding materials rather using welding method.
(5) When testing different shapes of permeability ferromagnetic materials in magnetic fields generated by long electric line, the order of intensity of shielding effectiveness is cylindrical > square> double U shaped > U shaped > plate.
(6) While surveying in workplace, we found that:
1. The large equipments such as electric welding machines, transformers, motors, power pane land power conditioners often are with higher magnetic flux density (up to 100 - 1000 mG).
2. It is often with less magnetic flux density in business buildings. If there’s a transformer located below a building, the magnetic flux density might be up to 10 - 100 mG.
3. While designing and installing the shield in workplace, we suggest that it is more efficient and economic to use plate shape of shielding material. The shielding effectiveness was more than 14 dB in the two cases of this study.


目錄
摘 要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
第一節 前言 1
第二節 研究目的 2
第二章 文獻探討 3
第一節 相關磁場理論介紹 3
第二節 電力頻磁場評估方法 13
第三節 居家生活及作業環境電力頻磁場分佈 17
第四節 電力頻磁場暴露評估 25
第五節 電力頻磁場控制方法 26
第三章 實驗材料與方法 49
第一節 模擬電力頻磁場 49
第二節 電力頻磁場測量儀器 52
第三節 屏蔽材料選擇 56
第四節 電力頻磁場屏蔽參數測試 56
第五節 實場案例調查及其磁場屏蔽控制 60
第四章 結果 61
第一節 實驗室屏蔽參數測試結果 61
第二節 作業環境現場磁場測量 104
第三節 案例及其改善對策 109
第五章 討論 129
第一節 屏蔽施工之參數探討 130
第二節 作業場所磁場測量數據之探討 138
第三節 屏蔽實例控制之探討 138
第六章 結論 141
參考文獻 143
附錄 151


參考文獻
1. Ahlbom I.C., Cardis E., Green A., Linet M., Savitz D., Swerdlow A., “Review of Epidemiologic Literature on EMF and Health”, Environmental Health Perspectives, Vol.109, No.6, pp.911 - 933, 2001.
2. 李中一, “職業暴露於及低頻電場與磁場之危害與防護”, 中華職業醫學雜誌, 4(4):213-222 , 1997.
3. Wertheimer N., Leeper E., “Electrical Wiring Configurations and Childhood Cancer”, American Journal of Epidemiology, Vol.109, No.3, pp.273 - 284, 1979.
4. Milham S., “Mortality from Leukemia in Workers Exposed to Electrical and Magnetic Fields”, The New England Journal of Medicine, Vol.307, No.4, pp.249, 1982.
5. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans Vol.80, Non-Ionizing Radiation, Part1: Static and Extremely Low - Frequency (ELF) Electric and Magnetic Fields, 2002.
6. 李中一, “極低頻電磁場之人類致癌效應-回顧近期之流行病學文獻”, 中華職業醫學雜誌, 7(2):57-70, 2000.
7. Severson R.K., Stevents R.G., Kaune W.T., Thomas D.B., Heuser L., Davis S., Sever L.E., “Acute Nonlymphocytic Leukemia and Residential Exposure to Power Frequency Magnetic Fields”, American Journal of Epidemiology, Vol.128, No.1, pp.10 - 20, 1988.
8. Manni V., Lisi A., Pozzi D., Rieti S., Serafino A., Giuliani L., Grimaldi S., “Effects of Extremely Low Frequency (50 Hz) Magnetic Fields on Morphological and Biochemical Properties of Human Keratinocytes”, Bioelectromagnetics, Vol.23, pp.298 - 305, 2002.
9. Day N., Skinner J., Roman E., Allen S.G., “ Exposure to Power- Frequency Magnetic Field and the Risk of Childhood Cancer ”, The Lancet, Vol.354, No.4, pp.1925 - 1931, 1999.
10. Ahlobom A., Day N., Feychting M., Roman E., Skinner J., Dockerty J., Linet M., Mcbride M., Michaelis J., Olsen J. H., “A Pooled Analysis of Magnetic Fields and Childhood Leukemia”, British Journal of Cancer, Vol.83, No.5, pp.692 - 698, 2000.
11. Rao N.N., “Elements of Engineering Electromagnetic fields”, 3 Th, New Jersey 07632, Prentice Hall, pp.115 - 170, 1991.
12. 鄭振東, “新編電磁學入門”, 建宏出版社, 第137 - 259頁, 1995.
13. 林清涼, 載念祖, “啟發性物理學 電磁學-宏觀電磁學, 光學和狹義相對論”, 五南圖書出版公司, 第七章, 第164 - 257頁, 2000.
14. 劉建君, “工程電磁學的場與波”, 五南圖書出版公司, 第219 - 312頁, 2002.
15. Wenderoth K., Petermann J., “Synergism on Electromagnetic Inductance ( EMI ) Shielding in Metal- and Ferroelectric- Particle Filled Polymers”, Polymer Composites, Vol.10, No.1, pp.52 - 56, 1989.
16. 曹龍泉, “防電磁波干擾電子資訊產品外殼材料研究”, 國立臺灣大學 材料科學與工程學研究所 博士論文, 第7-16頁, 民國八十九年七月.
17. The University of New South Wales ( UNSW ) Sydney Australia ,網址:http://www.phys.unsw.edu.au/PHYS2939/
18. 楊國輝, 廖淑慧, “應用電磁學”, 五南圖書出版公司, 第九章, 第410 -413頁, 2000.
19. IEEE Magnetic Field Task Force of the AC Fields Working Group of the Corona Field Effects Subcommittee of the Transmission and Distribution Committee., “A Protocol for Spot Measurements of Residential Power Frequency Magnetic Fields”, IEEE Transactions on Power Delivery, Vol.8, No.3, pp.1386 - 1394, 1993.
20. Fulton J.P., Cobb S., Preble L., Leone L., Forman E., “Electrical Wiring Configurations and Childhood Leukemia in Rhode Island”, American Journal of Epidemiology, Vol.111, No.3, pp.292 - 296, 1980.
21. Wertheimer N., Leeper E., Re: “Electrical Wiring Configurations and Childhood Leukemia in Rhode Island”, American Journal of Epidemiology, Vol.111, No.3, pp.461 - 462, 1980.
22. Wertheimer N., Leeper E., “Adult Cancer Related to Electrical Wires Near the Home”, International Journal of Epidemiology, Vol.11, No.4, pp.345 - 355, 1982.
23. Savitz D.A., Wachtel H., Barnes F.A., John E.M., Tvrdik J.G., “Case - Control Study of Childhood Cancer and Exposure to 60 - Hz Magnetic Fields”, American Journal of Epidemiology, Vol.128, No.1, pp.21 - 38, 1988.
24. Kaune W.T., Savitz D.A., “Simplification of the Wertheimer - Leeper Wire Code”, Bioelectromagnetics, Vol.15, pp.275 - 282, 1994.
25. Tarone R.E., Kaune W.T., Linet M.S., Hatch E.E., Kleinerman R.A., Robison L.L., Boice J.D., Wacholder S., “Residential Wire Codes: Reproducibility and Relation with Measured Magnetic Fields”, Occupational and Environmental Medicine, Vol.55, pp.333 - 339, 1998.
26. Tomenius L., “50-Hz Electromagnetic Environment and the Incidence of Childhood Tumors in Stockholm County”, Bioelectromagnetics, Vol.7, pp.191 - 207, 1986.
27. Myers A., Clayden A.D., Cartwright R.A., Cartwright S.C., “Childhood Cancer and Overhead Power lines: a Case - Control Study”, British Journal of Cancer, Vol.62, No.6, pp.1008 - 1014, 1990.
28. 阮齊宏, “變電工程”, 連經出版社, 第1 - 9頁, 1983.
29. 黃文良, “輸配電學-電力系統分析及設計-第二版”, 全華科技圖書股份有限公司, 第1 - 8頁, 1999.
30. Nair I., Morgan M.G., Florig H.K., U.S. Congress, Office of Technology Assessment, “Biological Effects of Power Frequency Electric and Magnetic Fields - Background Paper”, OTA-BP-E-53 (Washington, DC: U.S. Government Printing Office, May 1989).
31. 吳天得, “變電工程修訂版”, 全華科技圖書股份有限公司, 第1 - 11頁, 1999.
32. 俞家平, “屋內配線”, 國家出版社, 第25 - 33頁, 1999.
33. Gauger J.R., “Household Appliance Magnetic Field Survey”, IEEE Transactions on Power Apparatus and Systems, Vol.PAS -104, No.9, pp.2436 - 2444, 1985.
34. Silva M., Hummon N., Rutter D., Hooper C., “Power Frequency Magnetic Fields in the Home”, IEEE Transactions on Power Delivery, Vol.4, No.1, pp.465 - 478, 1989.
35. Merchant C.J., Renew D.C., Swanson J., “Exposures to Power Frequency Magnetic Fields in the Home”, Journal of Radiological Protection, Vol.14, pp.77 - 87, 1994.
36. Merchant C.J., Renew D.C., Swanson J., “Occupational Exposures to Power Frequency Magnetic Fields in the Electricity Supply Industry”, Journal of Radiological Protection, Vol.14, pp.155 - 164, 1994.
37. Swanson J., “Long - Term Variations in the Exposure of the Population of England and Wales to Power-Frequency Magnetic Fields”, Journal of Radiological Protection, Vol.16, pp.287 - 301, 1996.
38. 劉志放,郭宗益,王金敦,王珠麗,李富雄,李東, “配電與用戶設備磁通密度量測與分析”, 台電工程月刊, 第569期, 第1 - 15頁, 1996.
39. Semple S., Cherrie J.W., “Factors Influencing Personal Magnetic Field Exposure: Preliminary Results for Power Utility and Office Workers”, The Annals of Occupational Hygiene, Vol. 42, No.3, pp.167 - 171, 1998.
40. Törnqvist S., Norell S., Ahlbom A., Knave B., “Cancer in the Electric Power Industry”, British Journal of Industrial Medicine, Vol.43, pp.212 - 213, 1986.
41. Breysse P., Peter S.J., McDiarmid M.A., Curbow B., “ELF Magnetic Field Exposures in an Office Environment”, American Journal of Industrial Medicine, Vol.25, pp.177 - 185, 1994.
42. Durkin C.J., Fogarty R.P., Halleran T.M., Mark D.D.A., Mukhopadhyay A., “Five Years of Magnetic field Management”, IEEE Transactions on Power Delivery, Vol.10, No.1, pp.219 - 228, 1995.
43. Olsen R.G., Lyon C.E., “Modeling of Extremely Low Frequency Magnetic Field Sources Using Multipole Techniques”, IEEE Transactions on Power Delivery, Vol.11, No.3, pp.1563 - 1570, 1996.
44. 李中ㄧ, 林瑞雄, “極低頻電磁場暴露與癌症之流行病學-文獻探討, 勞工安全衛生研究季刊, 第三卷第二期, 第1 - 24頁, 民國八十四年六月.
45. 楊明枝, 蘇德勝, “極低頻電磁場曝露對勞工健康危害之研究”, 勞工研究季刊, 第119期, 第69 - 87頁, 民國八十四年四月.
46. Burnett J., Du Y., “Low Frequency Magnetic Interference in High - Rise Buildings”, Seventh International IBPSA Conference: Building Simulation 13 -15 Th, pp. 327-333, 2001.
47. Heath C. W., “Electromagnetic Field Exposure and Cancer: A Review of Epidemiologic Evidence”, A Cancer Journal for Clinicians, Vol.65, pp.29 - 44, 1996.
48. Gresham R.M., “EMI / RFI Shielding of Plastics”, Plating and Surface Finishing, pp.63 - 69, 1988.
49. Schulz R.B., Plantz V.C., Brush D.R., “Shielding Theory and Practice”, IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No.3, pp.187-201, 1988.
50. Moser J.R., “Low - Frequency Low - Impedance Electromagnetic Shielding”, IEEE Transactions on Electromagnetic Compatibility, Vol.30, No.3, pp. 202 - 210, 1988.
51. Gaier J.R., “Intercalated Graphite Fiber Composites as EMI Shields in Aerospace Structures”, IEEE Transactions on Electromagnetic Compatibility, Vol. 34, No.3, pp. 351 - 356, 1992.
52. Hoburg J.F., “Principles of Quasistatic Magnetic Shielding with Cylindrical and Spherical Shields”, IEEE Transactions on Electromagnetic Compatibility, Vol.37, No.4, pp.574 - 579, 1995.
53. Du Y., Cheng T.C., Farag A.S., “Principles of Power - Frequency Magnetic Field Shielding with Flat Sheets in a Source of Long Conductors” , IEEE Transactions on Electromagnetic Compatibility, Vol.38, No.3, pp.450 - 459, 1996.
54. Hiles M.L., Olsen R.G., Holte K.C., Jensen D.R., Griffing K.L., “Power Frequency Magnetic Field Management Using a Combination of Active and Passive Shielding Technology”, IEEE Transactions on Power Delivery, Vol.13, No.1, pp.171 - 179, 1998.
55. 葉中雄,曾衍彰,蔡文發, “電磁干擾與防護”, 徐氏基金會出版, 第六章, 第116 - 150頁, 民國八十七年五月.
56. 邱煥科, “近域磁場屏蔽特性”, 國立臺灣大學 電機工程研究所 碩士論文 民國八十三年六月.
57. Okada Y.C., “Ferromagnetic High - Permeability Alloy Alone Can Provide Sufficient Low - Frequency and Eddy - Current Shielding for Biomagnetic Measurements”, IEEE Transactions on Biomedical Engineering, Vol.41, No.7, pp.688 - 697, 1994.
58. Hoburg F.J., Clairmont B.A., Fugate D.W., Lordan R.J., “Comparisons of Measured and Calculated Power Frequency Magnetic Shielding by Multilayered Cylinders”, IEEE Transactions on Power Delivery, Vol. 12, No. 4, pp.1704 - 1710, 1997.
59. Lim K.C., Fugate D.W., Hoburg J.F., “Integral Law Descriptions of Quasistatic Magnetic Field Shielding by Thin Conducting Plates”, IEEE Transactions on Power Delivery, Vol. 12, No. 4, pp.1642 - 1650, 1997.
60. Clairmont B.A., Lordan R.J., “3-D Modeling of Thin Conductive Sheets for Magnetic Field Shielding: Calculations and Measurements”, IEEE Transactions on Power Delivery, Vol. 14, No. 4 , pp.1382 - 1393, 1999.
61. Bottauscio O., Chiampi M., Chiarabaglio D., Zucca M., “Use of Grain - Oriented Materials in Low - Frequency Magnetic Shielding ”, Journal of Magnetism and Magnetic Materials, Vol.215 - 216, pp.130 -132, 2000.
62. Zhang D., “Magnetic Skin Effect in Silicon-Iron Core at Power Frequency”, Journal of Magnetism and Magnetic Materials, Vol.221, pp.414 - 416, 2000.
63. 電機工程手冊編輯委員會, “機械工程手冊-金屬材料”, 五南圖書出版公司, 2002.
64. 王家騏, 俞國平, “電工材料”, 曉圓出版社, 民國七十四年月.
65. 順祥機械工業股份有限公司, 網址:http://www.ssm.com.tw/.
66. Cardelli E., Faba A., Massinelli A., “Experimental Analysis of Hysteresis in Low Frequency Magnetic Shields”, Physical B, Vol.306, pp.62 - 66, 2001.
67. 王進良, “電力設施磁場遮蔽之研究”, 國立臺灣科技大學 電機工程研究所 碩士論文, 第15 - 23頁, 民國九十一年六月.
68. Lovsund P., Oberg P.A., Nilsson S.E.G., “ELF Magnetic Fields in Electrosteel and Welding Industries”, Radio Science, Vol.17, No.5S, pp.35S - 38S, 1982.
69. Hasselgren L., Luomi J., “Geometrical Aspects of Magnetic Shielding at Extremely Low Frequencies”, IEEE Transactions on Compatibility, Vol.37, No.3, pp.409 - 420,1995.
70. Moreno P., Olsen R. G., “A Simple Theory for Optimizing Finite Width ELF Magnetic Field Shields for Minimum Dependence on Source Orientation”, IEEE Transactions on Electromagnetic Compatibility, Vol.39, No.4, pp.340 - 348, 1997.
71. Wassef K., Varadan V.V., Varadan V.K., “Magnetic Field Shielding Concepts for Power Transmission Lines”, IEEE Transactions on Magnetics, Vol. 34, No. 3, pp.649 - 654, 1998.
72. 美國非破壞性檢測(NDT)研究中心,網址:http://www.ndt-ed.org/index_flash.htm.
73. Du Y., Burnett J., “Power-Frequency Magnetic Shielding of Heavy-Current Conductors by Rectangular Shields”, IEEE Proceedings Generation, Transmission and Distribution, Vol.146, No.3, pp.223 -228, 1999.
74. Hasselgren L., Möller E., Hamnerius Y., “Calculation of Magnetic Shielding of a Substation at Power Frequency Using FEM”, IEEE Transactions on Power Delivery, Vol.9, No.3, pp.1398 - 1405,1994.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top