(3.236.214.19) 您好!臺灣時間:2021/05/10 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾嵩斌
研究生(外文):Sung-Pin Tseng
論文名稱:Ciprofloxacin抗藥性鼠傷寒及豬霍亂型沙門氏桿菌之分子流行病學及抗藥機轉
論文名稱(外文):Molecular Epidemiology and Resistance Mechanisms of Ciprofloxacin-Resistant S. typhimurium and S. choleraesuis
指導教授:何憲武何憲武引用關係
指導教授(外文):Shen-Wu Ho
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:沙門氏桿菌抗藥
外文關鍵詞:quinolonedrug resistancePFGE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Salmonella enterica為一常見引起腹瀉的致病菌,由於在台灣其對quinolone類藥物抗性的增加顯著上昇,為了解此抗藥現象,因此收集台大醫院分離 (1996~2000)、2001年三月到八月所收集的全省菌株 ( SMART study ) 以及1997~2002年從養豬場的豬隻身上收集到的15株菌株加以分析。利用PFGE分析其基因型,發現同一血清型的菌株其在基因上多屬於同一來源,由此可推測這些菌株的出現可能為一抗藥菌株散播的結果。為了探知這些菌株的來源,因此再分析從各地所得的動物菌株,發現有些菌株基因型與人體分離菌株相同,可證實由於食用具抗藥菌株的家畜家禽導致這些菌株傳播到人體的推測。
細菌對quinolone類藥物抗藥機轉目前認為主要是topoisomerase上發生突變以及efflux pump的活化所造成。首先以核酸定序的方式知道topoisomerase上QRDR (quinolone resistant-determining region)的位置的確有發生突變,故此應為造成抗藥的原因之一。再測量菌株對有機溶劑的忍受度以及對ciprofloxacin的累積程度,結果也說明抗藥菌株確實有efflux的活化。進一步以北方墨點法以及西方墨點法分析S. cholerasuis主要efflux pump AcrA在RNA以及蛋白表現上的差異,結果發現抗藥菌株比具感受性菌株來的多,同時在基因序列上也發現它的抑制蛋白基因acrR在Gln78Stp (CAG→TAG)發生點突變可能會導致AcrR無法產生,進而促進efflux的活化。而在S. typhimurium內並沒有發現到相同的結果推測其efflux pump AcrAB活化可能是由於上游基因 (marRAB, soxRS regulons)調控所致,需要再進一步的研究。
Salmonella enterica is one of the human pathogens that causes diarrhea and salmonellosis. Fluoroquinolones are often the choice of tratment in the case of salmonellosis. Unfortunately, the quinolone resistant strains significantly increased in recent year. To elevate the dissemination of this strain, clinical isolates from 1996-2001 were collected and analyzed. Pulsed-Field Gel Electrophoresis (PFGE) showed that majority of these clones that with identical serotype of S. enterica sharing similar PFGE pattern. This result suggested that these clinical pathogens were disseminated by similar source. In other word, this is the result of clone spreading effect. In addition, we collected animal infection strains and the result was compared with those clinical isolates. Interestingly, we found that some of the animal infection strains sharing the identical pulsoltype with clinical isolated, suggested that swine served as a reservoir for these resistant strains.

Recent study shows that the point mutation of topoisomerase and highly expressed of efflux pumps, such as acrAB operon, causes the bacteria increased the resistant ability to quinolone. Our sequencing results demonstrated the point mutation regions in quinolone resistance determination region (QRDR). Furthermore, organic solvent tolerance assay and ciprofloxacin accumulation assay showed the increasing activity of efflux pump in resistance strains. Northern blotting and Western blotting results confirmed the significantly increased expression level of acrA revealed that the activation of efflux pumps expression leads to the resistance effect in Taiwan. Besides, the stop codon mutation of acrR, an inhibitor of acrA, lost its function to inhibit acrA expression level resulting the over-expression of this efflux pumps. We also could not obtained the similar result in Salmonella typhimurium as S. enterica elevated that, except acrR, an unknown genes which might be involved in acrA regulatory system in resulting acrAB regulon increased its expression levels.
總目次
總目次…..……………………………………………………………………....i
圖目次…..……………………………………………………………………...ii
表目次………………………………………………………………………....iii
中文摘要…..…………………………………………………………………..iv
Abstract…………………………………………………………………………v
第一章 序論
第一節 前言………………….…………………………………………...1
第二節 沙門氏桿菌之感染………….…………………………………...1
第三節 沙門氏菌屬之分類………………………………………………2
第四節 沙門氏桿菌之治療與抗藥情形…………………………………3
第五節 細菌對於quinolone之抗藥機轉………………………………..5
第六節 研究動機…………………………………………………………6
第二章 材料及方法
第一節 實驗儀器及試藥…….…………………………………………..7
第二節 實驗菌株…………………………………………………….…11
第三節 實驗方法…………………………………………………….…11
第三章 結果
第一節 流行病學的分析…….…………………………………………19
第二節 拓樸酶第二及第四型QRDR之分析…………………………20
第三節 運輸幫浦之篩選……………………………………………….20
第四節 確認運輸幫浦之活化………………………………………….21
第五節 造成AcrAB efflux pump活化的原因…………………………21
第四章 討論………………………………………………………………….22
參考文獻………………………………………………………………...……64
圖目次
圖一: 林口長庚所分離之菌株資料………………………………………………..26
圖二: 參與DNA複製的兩個重要酵素…………………………………………….27
圖三: DNA與Topoisomerase II作用的方式…………….………………..…………28
圖四: 台大醫院細菌室報告………………………...………………………………29
圖五: Salmonella enterica serotype Typhimurium PFGE XbaI分型結果……......…30
圖六: Salmonella enterica serotype Choleraesuis PFGE XbaI分型結果…...…...….31
圖七: Salmonella enterica serotype Typhimurium PFGE BlnI分型結果………..….32
圖八: Salmonella enterica serotype Choleraesuis PFGE BlnI分型結果………...….33
圖九: Salmonella enterica serotype Choleraesuis pulsotype b之pulsosubtype……..34
圖十: 細菌體內ciprofloxacin累積試驗 (accumulation of ciprofloxacin)…………35
圖十一: 北方墨點法分析…………………………………………………………...36
圖十二: 西方墨點法分析…………………………………………………………...37圖十三: marRAB & soxRS regulons………………………………………………....38
圖十四: Ciprofloxacin resistance in Samonella species 671 isolates, Taiwan..……...39
圖十五: Fluroquinolone resistance among non-typhoid salmonella in Taiwan……...40
圖十六: [T-1]gyrA上83及87位置氨基酸改變所造成電性的改變……………...41
圖十七: [T-12]gyrA上83及87位置氨基酸改變所造成電性的改變……………...42









表目次
表一: 民國70年至90年台灣地區食品中毒案件病因物質分類表……………..43
表二: 至1999年為止沙門氏桿菌屬及亞種血清型統計………………………….44
表三: Characteristics of S. enterica serotype Typhimurium and Choleraesuis…..45-53
表四: 菌株QRDR之分析……..……………………….………………………..54-59
表五: Salmonella enterica serotype Choleraesuis QRDR序列分析整理…….…60-61
表六: 有機溶劑容忍度試驗 (Organic solvent tolerance test)……………...…62
表七: Characteristics of Salmonella enterica isolates from human in Taiwan…....…63
Arakawa Y, Murakami M, Suzuki K, Ito H, Wacharotayankun B, Ohsuka S et al., A novel integron-like element carrying the metallo-β-lactamses gene blaIMP .Antimicrob Agents Chemother 1995;39:1612-5.

Barnass S, Franklin J, Tabaqchali S. The successful treatment of multiresistant non-enteric salmonellosis with seven day oral ciprofloxacin. J Antimicrob Chemother 1999;25:299-300.

Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol 2000;38:2465-7.

Chiu CH, Wu TL, Su LH, Chu C, Chia JH, Kuo A. et al., The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N Engl J Med 2002;346:413-9.

Fass D, Bogden CE, Berger JM. Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nature 1999;6:322-6.

Giraud E, Cloeckaert A, Elisabeth CD. Evidence for active efflux as the primary mechanism of resistance ciprofloxacin in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2000;44:1223-8.

Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002;66:671-701.

Hallett P, Maxwell A. Novel quinolone-resistance mutations of the Escherichia coli DNA gyrase A protein: enzyme analysis of the mutant proteins. Antimicrob Agents Chemother 1991;35:335-340.
Hsueh PR, Liu CY, Luh KT. Current status of antimicrobial resistance in Taiwan. Emerg Infect Dis 2002;8:132-7.

Hsueh PR, Teng LJ, Tseng SP, Chang CF, Wan JH, Yan JJ. et al., Ciprofloxacin-resistant salmonella enterica typhimurium an choleraesuis from pigs to gumans, Taiwan. Emerg Infect Dis 2004;10:60-8.

Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 2001;32(suppl 1):S9-S15.

Khodursky AB, Zechiedrich EL, Cozzarelli NR. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci 1995;92:11801-5.

Jean SS, Teng LJ, Hsueh PR, HO SW, Luh KT. Antimicrobial susceptibilities among clinical isolates of extended-spectrum cephalosporin-resistant Gram-negative bacteria in a Taiwanese University Hospital. J Antimicrob Chemother 2002;49:69-76.

João H, Cabral M, Jackson AP, clare V, Shikotra SN, Maxwell A. et al., Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 1997; 388:903-6.

Le Minor L, Popoff MY. Designation of Salmonella enterica sp. nov. as the type and only species of the genus Salmonella. Int J Syst Bacteriol 1987;37:465-8.

Levine WC, Buehler JW, Bean NH, Tauxe RV. Epidemiology of nontyphoidal Salmonella bacteraemia during the human immunodeficiency virus epidemic. J Infect Dis 1991;164:81-7.
Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995; 39:185-191.

Liebana E, Clouting C, Cassar CA, Randall LP, Walker RA, Threlfall EJ et al. Comparison of gyrA mutations, cyclohexane resistance, and the presence of class 1 intergons in Salmonella enterica from farm animals in England and Wales. J Clin Microbiol 2002;40:1481-6.

Lu S, Manges AR, Xu Y, Fang FC, Riley LW. Analysis of virulence of clinical isolates of Salmonella enteritidis in vivo and in vitro. Infect Immun 1999;67:5651-7.

Luis MM, Alvaro P, George AJ. Quinolone resistance from a transferable plasmid. Lancet 1998;351:797-9.

Miko A, Guerra B, Schroeter A, Dorn C, Helmuth R. Molecular characterization of multiresistant d-Taratrate-positive salmonella enterica serovar paratyphi B isolates. J Clin Microbiol 2002;40:3184-3191.

Molbak K, Baggesen DL, Aarestrup FM, Ebbesen JM, Engberg J, Frydendahl K, et al. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype Typhimurium DT104. N Engl J Med 1999;341:1420-5.

Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter gene in E. coli. J Bacteriol 2001;183:5803-5812.

Olsen Sj, DeBess EE, McGiven TE, Marano N, Eby T, Mauvais, et al. A nosocomial outbreak of fluoroquinolone-resistant salmonella infection. N Engl J Med 2001;344:1527-159.

Oram M, Fisher M. 4-quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother 1991;35:387-9.

Piddock LJV, Whale K, Wise R. Quinolone resistance in Salmonella: clinical experience. Lancet 1990;335:1459.

Piddock LJV, White DG, Gensberg K, Pumbwe L, Griggs DJ. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2000;44:3118-3121.

Poople K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 2000;44:2233-2241.

Popoff MY, Le Minor L. Antigenic formulas of the Salmonella serovars, 7th revision, WHO Collabrating Centre for Erference and Research on Salmonella, Institut Pasteur, Paris, 1997.

Rahmati SS, Yang AL, Davidson, Zechiedrich EL. Control of the AcrAB multidrug efflux pump by quorum sensing regulator SdiA. Mol Microbiol 2002;43:677–695.

Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer III JJ. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electriphoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989;27:313-320.

Sanders CC. Mechanism responsible for cross-resistance and dichotomous resistance among the quinolones. Clin Infect Dis 2001;32(suppl 1):S1-S8.

Sande M, Chambers H. (1996) Antimicrobial agents, general considerations, Section IX, Chemotherapy of microbial diseases. In: ardman, J., Limbird, L., Molinoff, P. et al. (Eds.), Goodman and Gilmans''s The Pharmacological Basis of Therapeutics, 9th edn. McGraw-Hill, New York.

Schwardz DC, Cantor CR. Separation of yeast chromosome-sized by pulsed field gradient gel electrophoresis. Cell 1984;37: 67-75.

Shea ME, Hiasa H. Interactions between DNA helicases and frozen topoisomerase IV-quinolone-DNA ternary complex. J Biol Chem 1999;77:6879-6883.

Sheng WH, Chen YC, Wang JT, Chang SC, Luh KT, Hsieh WC. Emerging fluoroquinolone-resistance for common clinically important gram-negative bacteria in Taiwan. Diagnostic Microbiology and Infectious Disease 2002;43:141-7.

Threlfall EJ, Graham A, Cheasty T, Ward LR, Rowe B. Resistance to cipro£oxacin in pathogenic Enterobacteriaceae in England and Wales in 1996. J Clin Pathol 1997;50:1027-8.

Threlfall EJ, Ward LR, Skinner JA, Graham A. Antimicrobial drug resistance in non-typhoidal salmonellas from humans in England and Wales in 1999: decrease in multiple resistance in Salmonella enterica serotypes Typhimurium, Virchow and Hadar. Microb Drug Resist 2000;4:319-325.

Toshio K, William BT, Hideo H. Molecular subtyping methods for detection of salmonella enterica serovar oranienburg outbreaks. J Clin Microbiol 2002; 40:2057-2061.

Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolon resistance. Proc Natl Acad Sci 2002;99:5638-5642.

Wang H, Dzink-Fox JL, Chen M, Levy SB. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutation. Antimicrob Agents Chemother 2001;45:1515-1521.

Wentzell LM, Maxwell A. The complex of DNA Gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex.J Mol Biol 2000;304,779-791.

Willmott CJ, Critchlow SE, Eperon IC, Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymease. J Mol Biol 1994;242:351-363.

Willmott CJR, Maxwell A. A single point mutation in the DNA Gyrase A protein greatly reduces binding of fluoroquinolone to the Gyrase-DNA complex. Antimicrob Agents Chemother 1993;37:126-7.

Wong SSY, Yuen KY, Yam WC, Lee TY, Chau PY. Changing epidemiology of human salmonellosis in Hong Kong, 1982-93. Epidemiol Infect 1994;113:425-434.

Yan JJ, Ko WC, Chiu CH, Tsai SH, Wu HM, Wu JJ. Emergence of ceftriaxone-resistant Salmonella Isolates and the rapid spread of plasmid-encoded CMY-2 like cephalosporinase, Taiwan. Emerg Infect Dis 2003;9:323-8.

Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA Gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990;34:1271-2.

Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 2000;37:219-2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 多重抗藥綠膿桿菌內跳躍子Tn6001之特性及甲苯胺藍對多重抗藥綠膿桿菌光動力殺菌之探討
2. Pseudomonas aeruginosa 菌株Ciprofloxacin抗藥性與抗藥基因gyrA、gyrB、parC以及parE的變異之分子機轉研究
3. 臺灣地區犬貓飼料及零食沙門氏菌之分離鑑定分型暨抗菌劑感受性調查
4. 雞隻及其飼養環境來源沙門氏菌抗藥特性調查
5. 斑馬魚Dickkopf-3-related gene (Dkk3a) 藉由膜蛋白受器Integrinα6b 調控肌肉調控蛋白myf5 基因啟動子的活性
6. 肺癌細胞膜異位表達三磷酸腺苷合成酶阻斷後的分子機制探討
7. 鴨、鵝雷氏桿菌抗菌劑感受性與對氯黴素類與奎諾酮類藥物抗藥性機制之研究
8. Salmonella Typhimurium與Salmonella Choleraesuis喹諾酮抗藥性決定區位突變型別與抗藥性能力之比較研究
9. 台灣西部地區豬隻與人類乳酸桿菌抗速博新與四環黴素之研究
10. Pseudomonas aeruginosa菌株的ciprofloxacin 抗藥性與菌體藥物輸出幫浦系統調控基因nfxB, mexR, mexZ, mexT與mexOZ的變異之分子機轉研究
11. 非傷寒沙門氏菌抗藥性分析:2010-2012年間北臺灣一家教學醫院臨床分離株之分析
12. 鑑定Annexin A4 為胃癌新穎分子標記並探討其於幽門螺旋桿菌感染後膜修復的角色
13. 創傷弧菌RTX毒素在該菌之致病機制中所扮演的角色
14. 豬霍亂沙門氏菌之Fluoroquinolones抗藥性機制中GyrA與MarR之交互作用關係
15. 比較MLST及PFGE方法分析包氏不動桿菌之分子流行病學研究
 
系統版面圖檔 系統版面圖檔