(34.226.234.102) 您好!臺灣時間:2021/05/12 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張慧貞
研究生(外文):Hui-Jen Chang
論文名稱:以PCR方法鑑定臨床分離之腸球菌和毒性因子分析
論文名稱(外文):PCR assay for species identification and virulence genes among clinical isolates of Enterococcus
指導教授:鄧麗珍鄧麗珍引用關係
指導教授(外文):Lee-Jene Teng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:73
中文關鍵詞:毒力基因腸球菌熱刺激蛋白基因
外文關鍵詞:virulence geneEnterococcusgroESL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腸球菌主要引起的疾病包括菌血症,尿道感染,心內膜炎,傷口感染等,近年來,腸球菌在世界各地引起的感染症日益增加,甚至成為院內感染的主要病菌之一,所以為了有效的治療及監控腸球菌的感染,快速且正確的菌種鑑定是非常重要的。而以傳統的生化方式鑑定腸球菌是非常耗時的,而市售的快速鑑定系統,對於腸球菌少見菌種的鑑定,正確率並不高。因此本研究希望利用分子生物學的方法,以groESL基因為標的,發展對腸球菌菌種鑑定有效的方法。
由於本實驗室之前已得到Enterococcus faecalis ATCC 29212之參考菌株的groESL基因全長序列及其他八株腸球菌參考菌株近乎全長的groESL基因序列。在本實驗中,欲利用已得到的groESL基因序列,發展multiplex PCR的分析方法,正確的區分腸球菌不同的菌種(species)。將腸球菌不同菌種的groESL基因序列排列之後,選擇序列變異性大的位置設計對不同species有專一性的引子,藉由所增幅出的PCR片段大小的不同,期望能用簡單的multiplex PCR的方式,正確的鑑定不同種(species)的腸球菌。所增幅出的PCR產物大小為141 bp至745 bp不等,其中除了E. avium和E. raffinosus產物大小無法區分,E. hirae和E. mundtii無法區分之外,其他菌種皆可增幅出專一的PCR產物。如欲再區分以上菌種,可再利用PCR-RFLP的方式,以Hind III限制酵素處理PCR產物,藉由產生不同的RFLP pattern,區分multiplex PCR片段大小相同的菌種。首先,先以標準菌株測試,可行之後,再測試由台大醫院收集的114株腸球菌的臨床菌株,所用的臨床菌株經過16S rDNA定序確認,測試後發現我們所發展出的利用multiplex PCR鑑定腸球菌的方法,具有100%的專一性,可提供另一正確鑑定腸球菌菌種的方法,另外,也與自動化鑑定系統Phoenix的鑑定結果作比較。此外,也結合了臨床上常見的革蘭氏陽性球菌(GPC),包括Staphylococcus aureus, Streptococcus species,和Enterococcus species,以不同的基因為標的,利用multiplex PCR的方式,區分此三類的革蘭氏陽性球菌,未來希望能直接從檢體中區分出常見的GPC。
另一部分,由於以往認為E. faecium致病性較低,但近年來發現E. faecium與E. faecalis一樣,具有esp這個毒力基因,且具有hyl這個有潛力的毒力基因,加上本實驗室之前發現,以groESL基因為標的,利用PCR-RFLP的方式可以將E. faecium區分為兩種type,因此欲探討E. faecium不同的PCR-RFLP types與毒力基因之間的關係。實驗中,共測試了86株臨床菌株,發現esp,hyl這兩個毒力基因只有在PCR-RFLP type I中出現,type II並沒有發現,不過這可能是因為type II的臨床菌株數目較少的關係。另外,若分為VRE和non-VRE來比較的話,發現在VRE中,esp基因所佔的比例高達67.4 %,而hyl基因高達60.46 %,相對於non-VRE (13.95 %, 13.95 %) 來說高出釵h。且esp和hyl基因常伴隨存在。
Identification of Enterococcus to the species level by conventional methods is time-consuming and complicated. Accurate identification of bacteria is important for effective treatment. In this study, we developed a multiplex PCR assay targeting groEL gene to identify Enterococcus to the species level. Species-specific primers from 9 species were designed based on the variable regions of each groEL gene. Each species generated different size (141 to 745 bp) except E. avium/ E. raffinosus and E. hirae/ E. mundtii. Further digestion of PCR products with Hind III can distinguish E. avium from E. raffinosus and E. hirae from E. mundtii. A total of 114 clinical isolates were tested and showed that the assay had 100% agreement with identification by 16S rDNA sequence. This multiplex PCR assay is easy to perform and accurate for identification of Enterococcus species including E. faecalis/ faecium and non- E. faecalis/ faecium species. In another part, three pairs of primers were combined to differentiate common gram positive cocci, including Staphylococcus aureus, Streptococcus species, and Enterococcus species.
Furthermore, the prevalence of esp and hyl of E. faecium was also investigated. E. faecium is generally considered to be a species of limited virulence. Recently, some data suggest that E. faecium strains may have become more and more virulent. esp and hyl are potential virulence genes of E. faecium strains. Besides, in our previous study, we found that E. faecium clinical isolates could group into two PCR-RFLP types based on groESL genes. The aim of the study was to find the correlation between different PCR-RFLP types of E. faecium and esp, hyl virulence genes. Of 86 strains tested, both determinants were found predominately in groESL PCR-RFLP type I strains. All PCR-RFLP type II strains have neither esp nor hyl virulence genes. However, comparing VRE with non-VRE, both esp and hyl virulence genes were mainly present in VRE.
Contents

中文摘要 1

Abstract 3

Experiment design 5

Chapter 1: Introduction 6

Chapter 2: Materials & Methods 14

Chapter 3: Results 31

Chapter 4: Discussion 38

References 67
陳品妏.2001. 草綠色鏈球菌之groESL基因定序、分子演化及臨床應用. 國立台灣大學碩士論文.
Bergeron, M.G., and Ouellette, M. (1998) Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory. J Clin Microbiol 36: 2169-2172.
Berry, A.M., and Paton, J.C. (2000) Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 68: 133-140.
Brakstad, O.G., Aasbakk, K., and Maeland, J.A. (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30: 1654-1660.
Chae, J.S., Foley, J.E., Dumler, J.S., and Madigan, J.E. (2000) Comparison of the nucleotide sequences of 16S rRNA, 444 Ep-ank, and groESL heat shock operon genes in naturally occurring Ehrlichia equi and human granulocytic ehrlichiosis agent isolates from Northern California. J Clin Microbiol 38: 1364-1369.
Descheemaeker, P., Lammens, C., Pot, B., Vandamme, P., and Goossens, H. (1997) Evaluation of arbitrarily primed PCR analysis and pulsed-field gel electrophoresis of large genomic DNA fragments for identification of enterococci important in human medicine. Int J Syst Bacteriol 47: 555-561.

Facklam, R.R., and Collins, M.D. (1989) Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol 27: 731-734.
Garcia-Garrote, F., Cercenado, E., and Bouza, E. (2000) Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. J Clin Microbiol 38: 2108-2111.
Goh, S.H., Potter, S., Wood, J.O., Hemmingsen, S.M., Reynolds, R.P., and Chow, A.W. (1996) HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34: 818-823.
Goh, S.H., Driedger, D., Gillett, S., Low, D.E., Hemmingsen, S.M., Amos, M., Chan, D., Lovgren, M., Willey, B.M., Shaw, C., and Smith, J.A. (1998) Streptococcus iniae, a human and animal pathogen: specific identification by the chaperonin 60 gene identification method. J Clin Microbiol 36: 2164-2166.
Goh, S.H., Facklam, R.R., Chang, M., Hill, J.E., Tyrrell, G.J., Burns, E.C., Chan, D., He, C., Rahim, T., Shaw, C., and Hemmingsen, S.M. (2000) Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. J Clin Microbiol 38: 3953-3959.
Hall, L.M., Duke, B., Guiney, M., and Williams, R. (1992) Typing of Enterococcus species by DNA restriction fragment analysis. J Clin Microbiol 30: 915-919.

Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W., and Ellis, R.J. (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330-334.
Hynes, W.L., and Walton, S.L. (2000) Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett 183: 201-207.
Iwen, P.C., Rupp, M.E., Schreckenberger, P.C., and Hinrichs, S.H. (1999) Evaluation of the revised MicroScan dried overnight gram-positive identification panel to identify Enterococcus species. J Clin Microbiol 37: 3756-3758.
Ke, D., Picard, F.J., Martineau, F., Menard, C., Roy, P.H., Ouellette, M., and Bergeron, M.G. (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37: 3497-3503.
Marston, E.L., Sumner, J.W., and Regnery, R.L. (1999) Evaluation of intraspecies genetic variation within the 60 kDa heat-shock protein gene (groEL) of Bartonella species. Int J Syst Bacteriol 49 Pt 3: 1015-1023.
Moellering, R.C., Jr. (1998) Vancomycin-resistant enterococci. Clin Infect Dis 26: 1196-1199.
Monstein, H.J., Quednau, M., Samuelsson, A., Ahrne, S., Isaksson, B., and Jonasson, J. (1998) Division of the genus Enterococcus into species groups using PCR-based molecular typing methods. Microbiology 144 ( Pt 5): 1171-1179.
Murray, B.E. (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3: 46-65.

Patel, R., Piper, K.E., Rouse, M.S., Steckelberg, J.M., Uhl, J.R., Kohner, P., Hopkins, M.K., Cockerill, F.R., 3rd, and Kline, B.C. (1998) Determination of 16S rRNA sequences of enterococci and application to species identification of nonmotile Enterococcus gallinarum isolates. J Clin Microbiol 36: 3399-3407.
Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L., and Simon, D. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66: 5620-5629.
Poyart, C., Quesnes, G., and Trieu-Cuot, P. (2000) Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol 38: 415-418.
Quednau, M., Ahrne, S., Petersson, A.C., and Molin, G. (1998) Identification of clinically important species of Enterococcus within 1 day with randomly amplified polymorphic DNA (RAPD). Curr Microbiol 36: 332-336.
Rastogi, N., Goh, K.S., and Berchel, M. (1999) Species-specific identification of Mycobacterium leprae by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol 37: 2016-2019.
Rice, L.B., Carias, L., Rudin, S., Vael, C., Goossens, H., Konstabel, C., Klare, I., Nallapareddy, S.R., Huang, W., and Murray, B.E. (2003) A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187: 508-512.
Sader, H.S., Biedenbach, D., and Jones, R.N. (1995) Evaluation of Vitek and API 20S for species identification of enterococci. Diagn Microbiol Infect Dis 22: 315-319.

Sahm, D.F., Marsilio, M.K., and Piazza, G. (1999) Antimicrobial resistance in key bloodstream bacterial isolates: electronic surveillance with the Surveillance Network Database--USA. Clin Infect Dis 29: 259-263.
Shankar, V., Baghdayan, A.S., Huycke, M.M., Lindahl, G., and Gilmore, M.S. (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67: 193-200.
Singer, D.A., Jochimsen, E.M., Gielerak, P., and Jarvis, W.R. (1996) Pseudo-outbreak of Enterococcus durans infections and colonization associated with introduction of an automated identification system software update. J Clin Microbiol 34: 2685-2687.
Steingrube, V.A., Gibson, J.L., Brown, B.A., Zhang, Y., Wilson, R.W., Rajagopalan, M., and Wallace, R.J., Jr. (1995) PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J Clin Microbiol 33: 149-153.
Sumner, J.W., Storch, G.A., Buller, R.S., Liddell, A.M., Stockham, S.L., Rikihisa, Y., Messenger, S., and Paddock, C.D. (2000) PCR amplification and phylogenetic analysis of groESL operon sequences from Ehrlichia ewingii and Ehrlichia muris. J Clin Microbiol 38: 2746-2749.




Teng, L.J., Hsueh, P.R., Wang, Y.H., Lin, H.M., Luh, K.T., and Ho, S.W. (2001) Determination of Enterococcus faecalis groESL full-length sequence and application for species identification. J Clin Microbiol 39: 3326-3331.
Teng, L.J., Hsueh, P.R., Tsai, J.C., Chen, P.W., Hsu, J.C., Lai, H.C., Lee, C.N., and Ho, S.W. (2002) groESL sequence determination, phylogenetic analysis, and species differentiation for viridans group streptococci. J Clin Microbiol 40: 3172-3178.
Tritz, D.M., Iwen, P.C., and Woods, G.L. (1990) Evaluation of MicroScan for identification of Enterococcus species. J Clin Microbiol 28: 1477-1478.
Tsakris, A., Woodford, N., Pournaras, S., Kaufmann, M., and Douboyas, J. (1998) Apparent increased prevalence of high-level aminoglycoside-resistant Enterococcus durans resulting from false identification by a semiautomated software system. J Clin Microbiol 36: 1419-1421.
Tyrrell, G.J., Bethune, R.N., Willey, B., and Low, D.E. (1997) Species identification of enterococci via intergenic ribosomal PCR. J Clin Microbiol 35: 1054-1060.
Viale, A.M., Arakaki, A.K., Soncini, F.C., and Ferreyra, R.G. (1994) Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol 44: 527-533.

Wilke, W.W., Marshall, S.A., Coffman, S.L., Pfaller, M.A., Edmund, M.B., Wenzel, R.P., and Jones, R.N. (1997) Vancomycin-resistant Enterococcus raffinosus: molecular epidemiology, species identification error, and frequency of occurrence in a national resistance surveillance program. Diagn Microbiol Infect Dis 29: 43-49.
Willems, R.J., Homan, W., Top, J., van Santen-Verheuvel, M., Tribe, D., Manzioros, X., Gaillard, C., Vandenbroucke-Grauls, C.M., Mascini, E.M., van Kregten, E., van Embden, J.D., and Bonten, M.J. (2001) Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357: 853-855.
Willey, B.M., Jones, R.N., McGeer, A., Witte, W., French, G., Roberts, R.B., Jenkins, S.G., Nadler, H., and Low, D.E. (1999) Practical approach to the identification of clinically relevant Enterococcus species. Diagn Microbiol Infect Dis 34: 165-171.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔