(3.236.100.86) 您好!臺灣時間:2021/05/06 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊文傑
研究生(外文):Wen-Chieh Yang
論文名稱:建構嚴重急性呼吸道症候群病毒之重組腺病毒疫苗
論文名稱(外文):Construction of Recombinant Adenovirus Vaccine against SARS-CoV
指導教授:張淑媛張淑媛引用關係
指導教授(外文):Sui-Yuan Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:重組腺病毒載體DNA疫苗嚴重急性呼吸道症候群
外文關鍵詞:recombinant adenoviral vectorsSARS-CoVDNA vaccines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嚴重急性呼吸道症候群 (Severe Acute Respiratory Syndrome, SARS)為一具有高度傳染性和高致死率的新興疾病,在2003年2月至7月間造成全球性的大流行,致病原目前已知為一新型變種冠狀病毒,命名為SARS-CoV。至2003年7月截止,總計感染人數8098人。由於目前對
於SARS並無有效的治療方法,為免SARS再次捲土重來爆發流行,因此疫苗的研發成為十分重要的工作。本論文使用重組腺病毒當做載體設計SARS疫苗,重組腺病毒能夠高量的表達蛋白質,而且感染不會引起嚴重危害,使用上具有高安全性,目前已被廣泛拿來試驗當作疫苗的可行性。以重組腺病毒為載體之疫苗在許多病毒性疾病中幾乎都能夠引發抗體反應產生中和抗體,在某些病毒性疾病還可額外引發細胞免疫。另外,重組腺病毒因為能感染黏膜組織,所以能夠引發黏膜性免疫(mucosal immunity),對於藉由性接觸或黏膜感染的病毒疾病,提供了有效的保護效果。本論文以SARS-CoV結構蛋白基因spike(S), membrane(M), envelope(E) 為基礎建構重組腺病毒疫苗,目前已建構出三種重組腺病毒,分別為攜帶S基因、帶有M和E基因和帶有S,M,E基因的三種重組腺病毒載體。載體建構完成後,以質體DNA和重組腺病毒當做疫苗施打BALB/c小鼠,分別以施打DNA疫苗、施打重組腺病毒疫苗和先施打DNA疫苗再追加重組腺病毒疫苗的方式在小鼠模式中比較以不同施打策略誘發之免疫反應。最後,本論文將利用ELISA方法偵測免疫後小鼠體內有無引發SARS病毒專一性抗體。
The Severe acute respiratory syndrome (SARS) is a newly emerged disease with high infectivity and morbidity. It caused the global pandemic between February and July in 2003. As of July 31, 2003, SARS has been affecting 8098 individuals and causing 774 deaths (WHO). The causative agent for SARS has been identified as a novel coronavirus, the SARS-CoV. There are no effective therapies for SARS at present and it is very important to prevent the reemergence of SARS. Among the viral vectors used in vaccine design, recombinant adenovirus is known for high-level protein expression and efficient induction of neutralizing antibody and/or cellular immunity in many virus diseases, yet only causes mild illness in humans. Besides, recombinant adenovirus vaccine can induce mucosal immunity, which can effectively protect host from viral diseases disseminated through mucosa. In this study, we used the recombinant adenovirus as vactor and the three SARS structure proteins, spike (S), membrane (M) and envelope (E) as targets, to develop SARS vaccines. We have constructed three recombinant adenoviral vectors encoding S (Adv/S), M and E (Adv/ME) or S, M and E (Adv/SME), respectively. The pShuttle plasmids encoding the M/E and S, were used as DNA vaccines. Three immunization strategies, DNA immunization, ADV vaccination and DNA/ADV prime-boost immunization regimen were performed in mice to compare their efficiency in inducing humoral and cellular immune responses. The SARS-CoV specific antibody induced by the recombinant adenovirus vaccines and DNA vaccine will be determined by ELISA.
目 錄        1

圖表目錄  3

中文摘要 4

英文摘要 5

第一章、緒論 6
1.1 SARS病毒簡介 6
1.1.1嚴重急性呼吸道症候群病毒之流行病學 6
1.1.2 SARS病毒之鑑定與分類 7
1.1.3病毒基因體結構 8
1.1.4 SARS病毒結構蛋白         8
1.2 疫苗的發展 11
1.2.1 DNA疫苗 11
1.2.2重組腺病毒疫苗 13
1.2.3 SARS疫苗的研發 16
1.3 研究目的和實驗設計 17

第二章、材料與方法 18
2.1 實驗材料     18
2.2 實驗方法 23
2.2.1細胞株與細胞培養 24
2.2.2重組腺病毒的製備 24
2.2.3 以大腸桿菌(BL21)表現S、M、E蛋白     30
2.2.4 硫酸十二酯鈉多醯胺凝膠電泳 31
2.2.5 小鼠免疫實驗 33
2.2.6酵素連接免疫吸附分析法(ELISA)   34

第三章、結果 35
3.1 重組腺病毒疫苗之構築    35
3.2 蛋白質表現 36
3.3 小鼠免疫實驗    37
3.4 測定抗SARS病毒S、M、E蛋白質之特異性IgG 37

第四章、討論 38

圖表 41
附錄 61
參考文獻            63
1. Christian MD, Poutanen SM, Loutfy MR, Muller MP, Low DE. Severe acute respiratory syndrome. Clin Infect Dis 2004;38(10):1420-7.
2. Peiris JS. Severe Acute Respiratory Syndrome (SARS). J Clin Virol 2003;28(3):245-7.
3. Booth CM ML, Tomlinson GA. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003;289:2801.
4. Poutanen SM, Low DE, Henry B, et al. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003;348(20):1995-2005.
5. Tsang KW, Ho PL, Ooi GC, et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003;348(20):1977-85.
6. Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003;348(20):1986-94.
7. Hon KL, Leung CW, Cheng WT, et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet 2003;361(9370):1701-3.
8. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1953-66.
9. Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1967-76.
10. Fouchier RA, Kuiken T, Schutten M, et al. Aetiology: Koch''s postulates fulfilled for SARS virus. Nature 2003;423(6937):240.
11. Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003;331(5):991-1004.
12. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003;300(5624):1394-9.
13. Marra MA, Jones SJ, Astell CR, et al. The Genome sequence of the SARS-associated coronavirus. Science 2003;300(5624):1399-404.
14. Suzuki H, Taguchi F. Analysis of the receptor-binding site of murine coronavirus spike protein. J Virol 1996;70(4):2632-6.
15. Hingley ST, Leparc-Goffart I, Weiss SR. The mouse hepatitis virus A59 spike protein is not cleaved in primary hepatocyte and glial cell cultures. Adv Exp Med Biol 1998;440:529-35.
16. Sanchez CM, Izeta A, Sanchez-Morgado JM, et al. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 1999;73(9):7607-18.
17. Fleming JO, Stohlman SA, Harmon RC, Lai MM, Frelinger JA, Weiner LP. Antigenic relationships of murine coronaviruses: analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology 1983;131(2):296-307.
18. Ruan YJ, Wei CL, Ee AL, et al. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 2003;361(9371):1779-85.
19. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426(6965):450-4.
20. Hofmann H, Geier M, Marzi A, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 2004;319(4):1216-21.
21. Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 2004;279(5):3197-201.
22. Ho TY, Wu SL, Cheng SE, Wei YC, Huang SP, Hsiang CY. Antigenicity and receptor-binding ability of recombinant SARS coronavirus spike protein. Biochem Biophys Res Commun 2004;313(4):938-47.
23. Chang MS, Lu YT, Ho ST, et al. Antibody detection of SARS-CoV spike and nucleocapsid protein. Biochem Biophys Res Commun 2004;314(4):931-6.
24. Machamer CE, Rose JK. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J Cell Biol 1987;105(3):1205-14.
25. Machamer CE, Mentone SA, Rose JK, Farquhar MG. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A 1990;87(18):6944-8.
26. Swift AM, Machamer CE. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J Cell Biol 1991;115(1):19-30.
27. Junko Maeda JFR, Akihiko Maeda, and Shinji Makino. Membrane Topology of Coronavirus E Protein. Virology 2001;281163:163-169.
28. An S, Chen CJ, Yu X, Leibowitz JL, Makino S. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol 1999;73(9):7853-9.
29. Maeda J, Maeda A, Makino S. Release of coronavirus E protein in membrane vesicles from virus-infected cells and E protein-expressing cells. Virology 1999;263(2):265-72.
30. Sturman LS, Holmes KV, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 1980;33(1):449-62.
31. Godet M, Grosclaude J, Delmas B, Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 1994;68(12):8008-16.
32. Yokomori K, Lai MM. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol 1992;66(10):6194-9.
33. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997;48:1-100.
34. Tahara SM, Dietlin TA, Bergmann CC, et al. Coronavirus translational regulation: leader affects mRNA efficiency. Virology 1994;202(2):621-30.
35. Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 2000;74(17):8127-34.
36. Lai MM. Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol 1990;44:303-33.
37. Surjit M, Liu B, Kumar P, Chow VT, Lal SK. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem Biophys Res Commun 2004;317(4):1030-6.
38. Stohlman SA, Kyuwa S, Polo JM, Brady D, Lai MM, Bergmann CC. Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J Virol 1993;67(12):7050-9.
39. Seo SH, Wang L, Smith R, Collisson EW. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 1997;71(10):7889-94.
40. Zhu MS, Pan Y, Chen HQ, et al. Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett 2004;92(3):237-43.
41. Chen Z, Pei D, Jiang L, et al. Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clin Chem 2004;50(6):988-95.
42. Sanjay Gurunathan DMK, Seder aRA. DNA VACCINES: Immunology, Application, andOptimization. Annu. Rev. Immuno 2000;18:927.
43. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247(4949 Pt 1):1465-8.
44. Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356(6365):152-4.
45. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259(5102):1745-9.
46. Robinson HL, Hunt LA, Webster RG. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 1993;11(9):957-60.
47. Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona CA. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 1997;186(9):1481-6.
48. Corr M, Lee DJ, Carson DA, Tighe H. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 1996;184(4):1555-60.
49. Doe B, Selby M, Barnett S, Baenziger J, Walker CM. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci U S A 1996;93(16):8578-83.
50. Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 1997;158(10):4591-601.
51. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998;188(6):1075-82.
52. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999;189(1):169-78.
53. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD, Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2(10):1122-8.
54. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998;392(6671):86-9.
55. Fu TM, Friedman A, Ulmer JB, Liu MA, Donnelly JJ. Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of influenza virus nucleoprotein induced by DNA immunization. J Virol 1997;71(4):2715-21.
56. Ulmer JB, Deck RR, Dewitt CM, Donnhly JI, Liu MA. Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology 1996;89(1):59-67.
57. Lin YL, Chen LK, Liao CL, et al. DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol 1998;72(1):191-200.
58. Vanderzanden L, Bray M, Fuller D, et al. DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology 1998;246(1):134-44.
59. Tang LL, Liu KZ. Recent advances in DNA vaccine of hepatitis virus. Hepatobiliary Pancreat Dis Int 2002;1(2):228-31.
60. Broker M, Abel KJ, Kohler R, Hilfenhaus J, Amann E. Escherichia coli-derived envelope protein gD but not gC antigens of herpes simplex virus protect mice against a lethal challenge with HSV-1 and HSV-2. Med Microbiol Immunol (Berl) 1990;179(3):145-59.
61. Miller M, Cho JY, Baek KJ, et al. Plasmid DNA encoding the respiratory syncytial virus G protein protects against RSV-induced airway hyperresponsiveness. Vaccine 2002;20(23-24):3023-33.
62. Tobery TW, Siliciano RF. Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med 1997;185(5):909-20.
63. Donnelly JJ, Martinez D, Jansen KU, Ellis RW, Montgomery DL, Liu MA. Protection against papillomavirus with a polynucleotide vaccine. J Infect Dis 1996;173(2):314-20.
64. Chen SC, Jones DH, Fynan EF, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol 1998;72(7):5757-61.
65. Davis HL, Michel ML, Mancini M, Schleef M, Whalen RG. Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine 1994;12(16):1503-9.
66. Davis HL, Whalen RG. DNA-based immunization. Mol Cell Biol Hum Dis Ser 1995;5:368-87.
67. Ginsberg HS. The ups and downs of adenovirus vectors. Bull N Y Acad Med 1996;73(1):53-8.
68. Bernards R, Van der Eb AJ. Adenovirus: transformation and oncogenicity. Biochim Biophys Acta 1984;783(3):187-204.
69. Gooding LR, Sofola IO, Tollefson AE, Duerksen-Hughes P, Wold WS. The adenovirus E3-14.7K protein is a general inhibitor of tumor necrosis factor-mediated cytolysis. J Immunol 1990;145(9):3080-6.
70. Wold WS, Gooding LR. Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 1991;184(1):1-8.
71. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36(1):59-74.
72. Witmer LA, Rosenthal KL, Graham FL, Friedman HM, Yee A, Johnson DC. Cytotoxic T lymphocytes specific for herpes simplex virus (HSV) studied using adenovirus vectors expressing HSV glycoproteins. J Gen Virol 1990;71 ( Pt 2):387-96.
73. Gogev S, Vanderheijden N, Lemaire M, et al. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine 2002;20(9-10):1451-65.
74. Duraiswamy J, Bharadwaj M, Tellam J, et al. Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res 2004;64(4):1483-9.
75. Jacobs SC, Stephenson JR, Wilkinson GW. High-level expression of the tick-borne encephalitis virus NS1 protein by using an adenovirus-based vector: protection elicited in a murine model. J Virol 1992;66(4):2086-95.
76. Hsu KH, Lubeck MD, Davis AR, et al. Immunogenicity of recombinant adenovirus-respiratory syncytial virus vaccines with adenovirus types 4, 5, and 7 vectors in dogs and a chimpanzee. J Infect Dis 1992;166(4):769-75.
77. Prevec L, Campbell JB, Christie BS, Belbeck L, Graham FL. A recombinant human adenovirus vaccine against rabies. J Infect Dis 1990;161(1):27-30.
78. Both GW, Lockett LJ, Janardhana V, et al. Protective immunity to rotavirus-induced diarrhoea is passively transferred to newborn mice from naive dams vaccinated with a single dose of a recombinant adenovirus expressing rotavirus VP7sc. Virology 1993;193(2):940-50.
79. Wesseling JG, Godeke GJ, Schijns VE, et al. Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 1993;74 ( Pt 10):2061-9.
80. Natuk RJ, Lubeck MD, Chanda PK, et al. Immunogenicity of recombinant human adenovirus-human immunodeficiency virus vaccines in chimpanzees. AIDS Res Hum Retroviruses 1993;9(5):395-404.
81. Gang Li XCAX. Profile of Specific Antibodies to the SARS-Associated Coronavirus. n engl j med 2003;349:5.
82. Chan KH, Poon LL, Cheng VC, et al. Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis 2004;10(2):294-9.
83. Gao W, Tamin A, Soloff A, et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003;362(9399):1895-6.
84. Zeng F, Chow KY, Hon CC, et al. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem Biophys Res Commun 2004;315(4):1134-9.
85. Choy WY, Lin SG, Chan PK, et al. Synthetic Peptide Studies on the Severe Acute Respiratory Syndrome (SARS) Coronavirus Spike Glycoprotein: Perspective for SARS Vaccine Development. Clin Chem 2004;50(6):1036-1042.
86. Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004;428(6982):561-4.
87. Kim TW, Lee JH, Hung CF, et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 2004;78(9):4638-45.
88. Bisht H, Roberts A, Vogel L, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 2004;101(17):6641-6.
89. Subbarao K, McAuliffe J, Vogel L, et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 2004;78(7):3572-7.
90. Gilbert SC, Schneider J, Hannan CM, et al. Enhanced CD8 T cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine 2002;20(7-8):1039-45.
91. Matsui M, Moriya O, Akatsuka T. Enhanced induction of hepatitis C virus-specific cytotoxic T lymphocytes and protective efficacy in mice by DNA vaccination followed by adenovirus boosting in combination with the interleukin-12 expression plasmid. Vaccine 2003;21(15):1629-39.
92. Park SH, Yang SH, Lee CG, Youn JW, Chang J, Sung YC. Efficient induction of T helper 1 CD4+ T-cell responses to hepatitis C virus core and E2 by a DNA prime-adenovirus boost. Vaccine 2003;21(31):4555-64.
93. Sullivan NJ, Geisbert TW, Geisbert JB, et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 2003;424(6949):681-4.
94. Guo JP, Petric M, Campbell W, McGeer PL. SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 2004;324(2):251-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔