(3.235.191.87) 您好!臺灣時間:2021/05/13 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李明峰
研究生(外文):Ming-Fung Lee
論文名稱:比咯高分子於微型生醫感測元件之表面改質與細胞生理應用之探討
論文名稱(外文):Studies of Surface Modification for Bio-MEMS Microdevices and Cell by Polypyrrole
指導教授:林啟萬林啟萬引用關係
指導教授(外文):Chii-Wann Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:75
中文關鍵詞:包埋心肌細胞比咯高分子表面改質多通道微電極陣列
外文關鍵詞:PPyentrapcardiomyocyteMultichannel neural probesSurface modification
相關次數:
  • 被引用被引用:3
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多通道微電極陣列已發展相當多年,其主要目的為刺激與紀錄神經電訊號,而在長時間植入時,其紀錄弁鄔鼎僩|隨時間產生漂移或失效,針對此一問題,對電極進行適當之表面改質以維持細胞與電極間之穩定性,為一合理且有效之方法。導電性高分子因具有易經由電化學聚合方式於金屬表面製備之特性,可避免電極直接與細胞接觸、保護電極、有效降低介面阻抗。此外,電化學聚合方式可配合物理性方式包埋酵素、蛋白質或其他化學單體,輕易地將特定電極或元件表面特性改變。
本研究所發展之電化學表面改質平台,利用比咯高分子電化學沉積方式製作於微感測器元件表面。利用比咯高分子於微機電元件進行表面改質,期以改善靈敏度、促進細胞吸附、保護電極表面以及適當地包埋固定誘導分子、生物分子或酵素作為生物感測器。目前研究結果顯示,可透過循環次數來控制比咯高分子之生成奈米等級膜厚,也可以比咯高分子所具有的包埋效果以及其應用於促進細胞之吸附。
結果分析顯示,在比咯高分子之表面特性分析上,沈積於微電極表面之比咯高分子粗糙度相較其沉積於金膜顯著增加。以及可控制循環聚合次數,每增加一循環膜厚呈現以平均約8.4 nm膜厚遞增;在改質部份,比咯高分子已成它a包埋Streptavidin-FITC、葡萄糖氧化酶以及抗原,而且所包埋之生物分子均有其弁鄔呇s在。此外,與SPR結合進行檢測,發現比咯高分子膜厚每增加8.4 nm會造成SPR角度約0.24度之變化,同時可檢測抗體抗原反應;最後,在細胞生理分析部份,經由比咯高分子包埋吸附蛋白進行改質之樣本表面,相較未改質之表面有兩倍之心臟細胞存活,而且有助微電極陣列於心肌細胞之電訊號量測。
Multichannel neural probes have been fabricated with MEMS technology. The electrodes are involved in the stimulating and recording of impulses from neurons of CNS, PNS. Current problems of chronic recording in CNS is that the device easily loses its ability to record neural activity in days after implantation. Surface modification is critical for maintaining the stable connection between electrodes and cells. Conductive polymer can facilitate the neural signal transduction from the cell to electrode, avoid electrode contact with cells directly, protect electrode, promote cells adhesion and easily fabrication by electrochemical method. More importantly, electrochemical polymerization method could entrap enzyme, protein and functional molecules to change the surface characteristics of electrodes and MEMS devices. In this thesis, an electrochemical deposition method has been developed to deposit conductive polymers together with bioactive molecules onto electrodes surface in nanometer thickness.
We reported the effects of the numbers of CV cycle as a nanofabrication controlling parameter on the deposited film thickness and roughness. The results indicate that the roughness of film deposited on microelectrode is increased dramatically than on macro electrode. In the results of PPy entrapment efficiency, fluorescent molecules entrapment can be demonstrated successfully and entrapped biomolecules remain their activity. And combined with SPR technology, we could detect the thickness of PPy and antigen-antibody interaction. It is noted that when the cardiomyocytes adhere to the foreign material such as electrode, the cell adhesion depends on the surfaces of electrodes and PPy plays a role for the adhesion of cardiomyocytes.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII

圖目錄 VI
第一章 緒論 1
1.1 前言 1
1.2 動機與目的 2
1.3 研究貢獻 4
1.4 文獻回顧 6
1.5 研究架構 9
第二章 實驗基礎 11
2.1 電化學原理與分析 11
2.1.1循環伏安法 14
2.1.2時間安培法 16
2.2導電性高分子簡介 18
2.2.1導電性高分子的應用 20
2.2.2比咯高分子 23
2.2.3電化學聚合法 25
2.2.4化學聚合法 26
2.3 感光性高分子 27
2.4生物分子之固定 30
2.5心肌細胞 32
第三章 實驗藥品與設備 33
3.1實驗設備部份 33
3.1.1電化學分析儀器 33
3.1.2原子力顯微鏡 34
3.1.3表面電漿子共振影像系統 35
3.1.4工作電極 36
3.1.5參考電極 38
3.1.6對極電極 38
3.1.7其他實驗設備 38
3.2藥品 39
3.2.1 比咯 39
3.2.2 乙腈 39
3.2.3 葡萄糖氧化酶 39
3.2.4 葡萄糖 40
3.2.5 Streptavidin-FITC 40
3.2.6 磷酸緩衝溶液 40
3.2.7 MTT assay 40
3.2.8 Vitrogen® 40
3.2.9 抗體抗原 41
3.2.10 其它試藥 41
3.3心肌細胞之取得 41
3.4實驗方法 42
3.4.1 電化學系統的架設 42
3.4.2 比咯高分子之聚合 44
3.4.3 比咯高分子包埋試驗 45
第四章 實驗結果與討論 46
4.1比咯高分子之表面特性分析 46
4.1.1 比咯高分子鍍於金膜之表面分析 46
4.1.2 比咯高分子鍍於微電極之表面分析 50
4.2比咯高分子包埋特性 52
4.2.1 比咯高分子包埋Streptavidin-FITC 52
4.2.2 比咯高分子包埋葡萄糖氧化酶 53
4.2.3 SPR檢測比咯高分子薄膜之特性以及抗體抗原 55
4.3 表面改質微機電元件之電氣特性 60
4.3.1表面改質微機電元件之直流阻抗分析 60
4.3.2表面改質微機電元件之交流阻抗分析 63
4.4 表面改質微機電元件於心肌細胞生理性質之探討 64
4.4.1表面改質金膜於心肌細胞生理性質之探討 64
4.4.2表面改質微極陣電極列於心肌細胞訊號之量測試 68
第五章 結論 70
第六章 展望 72
參考文獻 73
參考文獻
[1]Cui Xinyan; Wiler James; Dzaman Marta; Altschuler Richard; Martin David, “In vivo studies of polypyrrole/peptide coated neural probes,” Biomaterials, 24(2003), p777~87.
[2]Cui Xinyan; Hetke Jamille; Wiler James; Anderson David; Martin David, “Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes,” Sensor and Actuators A, 93(2001), p.8-18.
[3]Cui Xinyan; Valerie Lee; Yehoash Raphael; James Wiler; Jamille Hetke; David Anderson; David Martin, “Surface modification of neural recording electrodes with conducting polymer/biomolecule blends,” Journal of Biomedical Materials Research, 2001, p.261-72.
[4]Jesus De; Robert Weiss, “Conductive polymer blends prepared by in situ polymerization of pyrrole: a review”, Polymer engineering and science, 37(1997), p.1936-43.
[5]Gerard Manju; Chaubey Asha; Malhotra Malhotra, “Application of conducting polymers to biosensors,” Biosensors and Bioelectronics, 17(2002), p.345-59.
[6]Joyce Wong; Robert Langer; Donald Ingber, “Electrically conducting polymers can nonivasively control the shape and growth of mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, 91 (1994), p.3201-04.
[7]Aoki Takashi; Sanui Kohei; Ogata Naomi; Kumakura Konosuke; Okano Teruo; Sakurai Yoshiharu; Watanabe Makoto, “Culture of mammalian cells on polypyrrole-coated ITO as a biocompatible electrode,” Synthetic Matals, 71 (1995), p.2229-30.
[8]Schmidt Christine; Shastri Venkatram; Vacanti Joseph; Langer Robert, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proceedings of the National Academy of Sciences of the United States of America, 94 (1997), p.8948-53.
[9]Kotwal Arundhati; Schmidt Christine, “Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting materials,” Biomaterials, 22 (2001), p.1055-64.
[10]黃進益, “電化學的原理與應用”, 高立圖書有限公司出版, 1999.
[11]田福助, “電化學理論與應用”, 新科技書局出版, 2001.
[12]李昆峰, “電聚合鄰苯二胺薄膜之製作與評估其在分子模印感測上之應用”, 國立成奶j學醫學工程研究所碩士論文, 2001.
[13]秦治平, “導電高分子(聚(鄰-胺基苯甲基醚)、聚咇咯) / 蒙脫土奈米複合材料”, 中原大學化學研究所碩士論文, 2001.
[14]郭昭輝, “導電性高分子之技術與發展”, 塑膠資訊, 86 (2004), P.3-12.
[15]陳文章, “導電性高分子",化學, 52 (1995), p.197-202.
[16]Narayanan Vijay; Scranton Alec, “Photopolymerization of Composites”, Trends in Polymer Science, 5 (1997), p.415-9.
[17]劉瑞祥, “感光性高分子”, 復文書局出版,1988
[18]http://www.sbu.ac.uk/biology/enztech/immethod.html
[19]Cosnier Serge; Lepellec Arielle, “Poly(pyrrole–biotin): a new polymer for biomolecule grafting on electrode surfaces”, Electrochimica Acta, 44 (1999), P.1833-36.
[20]Ouerghi Oouerghi; Touhami Ahami; Jaffrezic-Renault Nicole; Martelet Claude; Ouada Ben; Cosnier Serge, “Impedimetric immunosensor using avidin–biotin for antibody immobilization”, Bioelectrochemistry, 56(2002) p.131-33
[21]Wang Lin-Xia; Li Xin-Gui; Yang Yu-Liang,“Preparation, properties and applications of polypyrroles” Reactive and Functional Polymers, 47(2001) p.125-39.
[22]Harry Fozzard, “The Heart And Cardiovascular System : Scientific Foundations”, 1986, p.627-628.
[23]Harry Fozzard, “The Heart And Cardiovascular System : Scientific Foundations”, 1986, p.672-673.
[24]Harry Fozzard, “The Heart And Cardiovascular System : Scientific Foundations”, 1986, p.-628.
[25]Harry Fozzard, “The Heart And Cardiovascular System : Scientific Foundations”, 1986, p.1138-9.
[26]Rebecca Carrier; Maria Papadaki; Maria Rupnick; Frederick Schoen; Nenad Bursac; Robert Langer, Lisa Freed; Gordana Vunjak-Novakovic, “Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization”, Biotechnology and Bioengineering, 64 (1999), p.580-9
[27]Mitcheson John; Hancox Jules; Levi Allan, “Cultured adult cardiac myocytes: Future applications, culture methods, morphological and electrophysiological properties” , Cardiovascular Research, 39 (1998), p.280-300.
[28]http://cohesiontech.com/
[29]Ming Zhou; Jürgen Heinze, “Electropolymerization of Pyrrole and Electrochemical Study of Polypyrrole. 3. Nature of "Water Effect" in Acetonitrile”, Journal of Physical Chemistry B., 103(1999), p.8451-57.
[30]Toomas Silk; Qi Hong; Jüri Tamm; Richard Compton, “AFM studies of polypyrrole film surface morphology I. The influence of film thickness and dopant nature,” Synthetic metals, 93(1998), p.59-64.
[31]Toomas Silk; Qi Hong; Jüri Tamm; Richard Compton, “AFM studies of polypyrrole film surface morphology II. Roughness characterization by the fractal demension analysis,”, Synthetic Metals, 93(1998), P65-71.
[32]Oleg Raiitman; Fernando�PAtolsky; Eugenii�KAtz, Itamar�WIllner, “Electrical contacting of glucose dehydrogenase by the reconstitution of a pyrroloquinoline quinone-functionalized polyaniline film associated with an Au-electrode: an in situ electrochemical SPR study”,Chemical Communications, 17(2002), p.1936-7.
[33]Oleg Raitman; Eugenii Katz; Andreas Bückmann; Itamar Willner, “Integration of Polyaniline/Poly(acrylic acid) Films and Redox Enzymes on Electrode Supports: An in Situ Electrochemical/Surface Plasmon Resonance Study of the Bioelectrocatalyzed Oxidation of Glucose or Lactate in the Integrated Bioelectrocatalytic Systems”, 124(2002), p.1687-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔