(3.236.222.124) 您好!臺灣時間:2021/05/19 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍挺恆
研究生(外文):Ting-Heng Lan
論文名稱:人體頸椎二階六面體網格產生器及鞭繩性傷害之模擬
論文名稱(外文):A Human Cervical Spine Quadratic Hexahedral Mesh Generator & Application in Whiplash Injury Simulation
指導教授:王兆麟
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:51
中文關鍵詞:鞭繩性傷害有限元素分析頸椎六面體網格
外文關鍵詞:Cervical SpineFEAHexahedral MeshWhiplash
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的
發展一套建模軟體,可利用STL檔案資料,建構二階六面體有限元素立體模型,並以ABAQUS檔案格式輸出。

背景
大部分的市售三維模型建構軟體,使用的是四面體網格,雖然可細微地描述複雜的生物體結構,但是由於需使用大量的網格數,因此當模型應用於限元素模型分析時,將會延長電腦處理器的計算時間。另外,前處理也耗費許多修模的動作,十分不便。

方法
本研究的建模軟體是在MATLAB 6.5平台上撰寫完成。我們將MIMICS所產生的人體頸骨表面模型 (STL 檔案) 匯入此軟體,由軟體建構出由六面體網格組成的有限元素模型,並以ABAQUS檔案格式輸出。之後,我們利用此模型在ABAQUS環境下,進行動、靜態力學模擬實驗,並與文獻的實驗結果做比較,以驗證本模型的正確性。除此之外,我們以ABAQUS執行模擬實驗的時間為基準,與商用軟體AMIRA建構出的四面體模型,做運算效率的比較。

結果
以運算效率而言,由於六面體模型所使用的元素數目較少,因此可用較少的時間完成模擬實驗。在動態力學模擬實驗方面,利用本模型所做出的模擬結果可解釋頸椎鞭繩性傷害產生的機制。
Background. Commercial FE-model generation software for medical use are mostly based on tetrahedral meshes, which have superiority in mapping complex geometric structure of biological objects in the expense of efficiency for FEA (finite element analysis) due to large number of elements.

Objectives. To develop a Quadratic hexahedral mesh generation system that is able to generate 3D Quadratic hexahedral meshes FE models of medical objects originally created in STL (Stereolithography) file format.

Methods. The 3D STL models of cervical spine (C1-C7) created by MIMICS were imported to the mesh generation system and converted into 3D FE models mapped with 20-nodes hexahedral elements in ABAQUS file format. The models were then applied to static and dynamic mechanical simulation tests in ABAQUS program and compared with the experimental results from previous study. To access the efficiency of mesh generation system, the calculate time (Total CPU Time) to complete simulation tests were compared with tetrahedral-mesh models created by commercial software (AMIRA).

Results. With respect to efficiency, the hexahedral-mesh models cost less time to complete simulation tests than tetrahedral-mesh models due to production of smaller numbers of elements. The results of dynamic mechanical simulation test were comparable with that of previous experiment and supported the mechanism of whiplash injury.
第一章 序論...........................................................................................................................................1
1—1 研究目的................................................................................................................................1
1—2 研究背景................................................................................................................................1
1—2—1 有限元素模型於生物力學分析之應用..................................................................1
1—2—2 Stereolithography(STL)檔案簡介..........................................................................2
1—2—3 四面體(Tetrahedral)與六面體(Hexahedarl)有限元素網格之比較..............4
1—2—4 ABAQUS(*.inp)檔案簡介..................................................................................6
1—2—5 人體頸椎簡介..........................................................................................................8
第二章 文獻探討.................................................................................................................................13
2—1 現有有限元素建模軟體分析..............................................................................................13
2—2 自動化產生有限元素網格之文獻探討..............................................................................13
2—3 頸椎力學模擬之文獻探討..................................................................................................18
第三章 材料與方法..............................................................................................................................22
3—1 材料.....................................................................................................................................22
3—2 方法與步驟..........................................................................................................................22
3—2—1 STLtoFEM 程式介面與操作說明.........................................................................22
3—2—2 STLtoFEM程式模型產生步驟與原理.................................................................24
3—2—3 ABAQUS_Combiner 程式介面與操作說明.........................................................31
3—2—4 ABAQUS_Combiner 程式模型產生步驟與原理.................................................32
3—2—5 力學模擬................................................................................................................35
第四章 結果與討論..............................................................................................................................40
4—1 靜態模擬結果與討論..........................................................................................................40
4—2 動態模擬結果與討論..........................................................................................................42
4—3 討論.....................................................................................................................................46
第五章 結論與未來展望......................................................................................................................48
5—1 結論.....................................................................................................................................48
5—2 未來展望..............................................................................................................................48
參考文獻.................................................................................................................................................49
[1] E. Bechet, J.-C. Cuilliere, F. Trochu, Generation of a finite element MESH from stereolithography (STL) files, Computer-Aided Design 34 (2002) 1-17

[2] Ulrich Hartmann, Frithjof Kruggel, A Fast Algorithm for Generating Large Tetrahedral 3D Finite Element Meshes from Magnetic Resonance Tomograms, IEEE

[3] R. Muller, P. Ruegsegger, Three-dimensional finite element modeling of non-invasively assessed trabecular bone structures, Med. Eng. Phys. Vol. 17 No. 2 pp.126-133, 1995

[4] Santosh G. Zachariah, Joan E. Sanders, George M. Turkiyyah, Automated Hexahedral Mesh Generation from Biomedical Image Data: Applications in Limb Prosthetics, IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 4, NO. 2, JUNE 1996.

[5] Branislav Jaramaz, Volkan Akcelik, Omar Ghattas, Anthony M. DiGioia III, DEVELOPMENT OF PATIENT-SPECIFIC FULLY HEXAHEDRAL 3D ANATOMIC MESHES USING ORTHOGONAL GRIDS, Center for Orthopaedic Research, UPMC Shadyside, Pittsburgh, Pennsylvania.

[6] N.Chiba, I. Nishigaki, Y. Yamashita, C. Takizawa, K. Fujishiro, A flexible automatic hexahedral mesh generation by boundary-fit method, Comput. Methods Appl. Mech. Engrg. 161 (1998) 145-154

[7] Nestor A. Calvo, Sergio R. Idelsohn, All-hexahedral element meshing: Generation of the dual mesh by recurrent subdivision, Comput. Methods Appl. Mech. Engrg.182 (2000) 371-378

[8] Tobias Pitzen, Fred Geisler, Dieter Matthis, Hans Muller-Storz, Dragos Barbier, Wolf-Ingo Steudel, Axel Feldges, A finite element model for predicting the biomechanical behaviour of the human lumbar spine, Control Engineering Practice 10 (2002) 83–90

[9] Thomas Zander, Antonius Rohlmann, Constantin Kl�嫪ckner, Georg Bergmann, Comparison of the mechanical behavior of the lumbar spine following mono- and bisegmental stabilization, Clinical Biomechanics 17 (2002) 439-445

[10] Richard Cooper, Cosmin Cardan, Robert Allen, Computer visualisation of the moving human lumbar spine, Computers in Biology and Medicine 31 (2001) 451–469

[11] Y. Zheng, M.S. Nixon, R. Allen, Lumbar spine visualisation based on kinematic analysis from videofluoroscopic imaging, Medical Engineering & Physics 25 (2003) 171–179

[12] 周崇頌醫師,頸椎傷害和顱臉疼痛與頭痛的關係

[13] Margareta Nordin, Victor H. Frankel, Dawn Leger, Angela Lis, Basic Biomechanics of the Musculoskeletal System, Third Edition, Lippincott Williams & Wilkins

[14] David J. Magee, Orthopedic Physical Assessment, Third Edition, W. B. SAUNDERS COMPANY

[15] McGill SM, Jones K, Bennett G, et al. Passive stiffness of the human neck in flexion, extension, and lateral bending. Clin Biomech 1994, 9:193-8

[16] Manohar M. Panjabi, Takehiko Miura, Peter A. Cripton, Jaw-Lin Wang, Amrinder S. Nain, Christian DuBois, Development of a System for In Vitro Neck Muscle Force Replication in Whole Cervical Spine Experiments, SPINE Volume 26, Number 20, pp 2214-2219, 2001

[17] Jaw-Lin Wang, MoHamad Parnianpour, Aboulfazl Shirazi-Adl, Ali E. Engin, Viscoelastic Finite-Element Analysis of a Lumbar Motion Segmen in Combined Compression and Sagittal Flexion, SPINE Volume 25, Number 3, pp 310-318, 2000

[18] Francisco Ezquerro ., Antonio Simo´n, Marý´a Prado, Ana Pe´rez, Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation, Medical Engineering & Physics 26 (2004) 11–22

[19] Manohar M. Panjabi, Adam M. Pearson, Shigeki Ito, Paul C. Ivancic, Jaw-Lin Wang, Cervical spine curvature during simulated whiplash, Clinical Biomechanics 19 (2004) 1–9

[20] Muhle C, Wiskirchen J, Weinert D, Falliner A, Wesner F, Brinkmann G, Heller M, Biomechanical aspects of the subarachnoid space and cervical cord in healthy individuals examined with kinematic magnetic resonance imaging, Spine 1998 Mar 1;23(5): 556-67

[21] F. Tencer, Allan ,Mirza, Sohail ,Bensel, Kevin, Internal Loads in the Cervical Spine During Motor Vehicle Rear-End Impacts: The Effect of Acceleration and Head-to-Head Restraint Proximity. Spine. 27(1):34-42, January 1, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top