(3.238.235.155) 您好!臺灣時間:2021/05/16 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方馨譽
研究生(外文):Shin-Yu Fang
論文名稱:超音波聲參數對於基因轉殖效率之影響:體外細胞實驗
論文名稱(外文):The Effect of Ultrasound Acoustic Parameters on the Gene Transfection Efficiency: in Vitro Study
指導教授:林文澧林文澧引用關係
指導教授(外文):Win-Li Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:70
中文關鍵詞:聲參數超音波脈衝重複頻率基因治療
外文關鍵詞:pulse repetition frequencyacoustic parameterultrasoundgene transfection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
如何發展正確、安全及有效的基因傳送方法在超音波基因治療中一直是主要的挑戰,本篇論文主旨在於找出最佳化的超音波聲參數使基因轉殖效率以及細胞存活率皆能增加。本篇論文中共討論超音波能量劑量(energy dose),超音波施打策略以及超音波脈衝重複頻率(pulse repetition frequency)三種超音波聲參數;一般而言,超音波能量劑量越高,轉殖效率越高,但死亡率也相對提高,在本研究中發現,對於子宮頸癌細胞(HeLa cell)而言,55 W(4.8 W/cm2) ~ 60 W (5.3 W/cm2)似乎是最好的超音波能量強度,而超音波照射時間需超過15秒,太高或太低的超音波劑量皆導致低轉殖效率;另外於“on-off”的超音波施打策略中,我們期待細胞於超音波能量“off”期能有足夠時間修補因超音波所造成的傷害,進而提高細胞存活率,而於下一次超音波能量“on”的期間則可進行下一階段的基因轉殖,因此我們測試在同樣的總“on”時間下(20秒),兩階段的超音波照射(各10秒)間隔不同的“off”時間(3秒、10秒、30秒、1分鐘與10分鐘)的基因轉殖效果,然而實驗結果證實此策略未能增加基因轉殖效率及細胞存活率,第二階段的超音波施打未能有基因轉殖的功能,推測其原因可能為超音波能量“off”期皆太長,細胞可能已產生對外來刺激的抵抗反應。我們進一步探討超音波脈衝重複頻率(PRF)對轉殖效率的影響,實驗結果發現當超音波工作週期(duty cycle)為50%且脈衝重複頻率低於2 Hz時,細胞擁有高轉殖效率,但會造成高溫升及高死亡率,當超音波工作週期(duty cycle)為50%且脈衝重複頻率高於1000 Hz時,轉殖效率明顯開始下降,而當超音波工作週期(duty cycle)為50%且脈衝重複頻率高於4000 Hz時,細胞雖然有高存活率及低溫升,但轉殖效率卻為0%,因此當超音波工作週期(duty cycle)為50%時,最佳脈衝重複頻率應為20 Hz 到1000 Hz之間;另外由實驗結果中可發現,當超音波每一次的施打時間與暫停時間比例(on-time/off-time)小於0.1時,轉殖效率急速下降(可降到0%),另外回顧兩階段”on-off”策略,亦可發現其施打時間與休息時間比例皆小於0.1,因此第二次超音波施打並未有轉殖效率,故總結而言,建議超音波每一次的施打時間與暫停時間比例(on-time/off-time)需大於0.1。
本研究中可發現超音波確實可以提高轉殖效率,但其詳細形成機制目前尚未得知,仍需未來更一步的探討與研究。
Ultrasound bioeffects highly depend on the exposure parameters such as sonication time, burst length, pressure amplitude, intensity and the pulse repetition frequency. The optimal parameters for ultrasound-mediated gene transfection have not been systematically determined. On this ground, we studied the effect of different acoustic parameters with the intention to find out the optimal parameters to increase both the transfection efficiency and the cell survival. We modified the following acoustic parameters: the energy dose (including the ultrasound intensity and ultrasound exposure time), the “off” time, and the pulse repetition frequency (PRF).
It was found that the optimal ultrasound power (intensity) would be between 55 W (4.8 W/cm2) and 60 W (5.3 W/cm2) while the ultrasound duty cycle was 50% for a total 20-sec exposure (PRF=200 Hz, 2500 cycles). The energy dose of 55 W-15 sec would be the threshold for gene transfection.
Although the ultrasound exposure could increase the transfection efficiency, the results of the on-off strategy contrasted to our intention. A short time break (3 sec, 10 sec, 30 sec, 1 min, or 10 min) would not increase the transfection efficiency or cell survival (however it can avoid extremely high temperature rise). One reasonable explanation might be the off-time was too long. Cells might have already induced some shock-resistive or stress-resistive mechanism.
On the other hand, we found that (1) the transfection efficiency declines rapidly while the PRF was higher than 1000 Hz. (2) When the PRF was lower than 2 Hz (the exposure on-time was longer than 250 ms), there was low cell survival probably because of the high temperature rise, although the transfection efficiency was relatively high. (3) The optimal PRF would be between 20 Hz and 1000 Hz. (4) While the PRF was between 20 Hz and 1000 Hz, a better transfection would be obtained when the “on” time to the “off” time ratio was greater than 0.1.
Overall, ultrasound-assisted gene delivery can improve the efficiency of nonviral gene delivery. Further studies for its mechanisms will be our future work.
Abstract III
Contents IV
List of Figures VI
List of Tables X
1. Introduction 1
2. Material and Methods 5
2.1 Cell culture and plasmid preparation 5
2.2 Ultrasound setup 7
2.2.1 Setup design 7
2.2.2 Pressure measurement 10
2.3 In vitro experiments 11
2.3.1 Preliminary experiments 11
2.3.2 Acoustic parameters 12
2.3.3 Hyperthermia experiments 17
2.4 Statistical analysis 18
3. Results 19
3.1 Pressure field 19
3.2 Preliminary experiments 21
3.3 Acoustic parameters 24
3.3.1 Energy dose 24
3.3.2 On-off strategy 33
3.3.3 Pulse repetition frequency (PRF) 41
3.4 Hyperthermia experiments 62
4. Discussions 64
5. Conclusions 68
References 69
[1]Niidome T, Hung L, “Gene therapy progress and prospects: nonviral vectors”, Gene Ther., 2002, 9:1647-1652
[2]Newman CM, Lawrie A, Brisken AF, Cumberland DC, “Ultrasound gene therapy: on the road from concept to reality”, Echocardiography, 2001, 18:339-347
[3]Amabile PG, Philippe G, Waugh, Jacob M, Lewis, Thomas N, Elkins, Christopher J, Janas, Wolfgang J, “High-efficiency endovascular gene delivery via therapeutic ultrasound”, J. Am. Coll. Cardiol., 2001, 37:1975-1980
[4]Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG,”Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading”, Proc. Natl. Acad. Sci. U.S.A, 1987, 84:8463-8497
[5]Kim HG, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME, “Ultrasound-mediated transfection of mammalian cells”, Hum. Gene Ther., 1996, 7:1339-1346
[6]Mitragori S, Blankschtein D, Langer R, “Ultrasound-mediated transdermal protein delivery”, Science, 1995, 269:850-853
[7]Guzman HR, Nguyen DX, Mcnamara AJ, Prausnitz MR, “Equilibrium loading of cells with macromolecules by ultrasound:effect of molecular size and acoustic energy”, J. Pharm. Sci., 2002, 91:1693-1701
[8]Miller DL, Bao S, Morris JE, “Sonoporation of cultured cells in the rotating tube exposure system”, Ultra. Med. & Biol., 1999, 25:143-149
[9]Manome Y, Nakamura M, Ohno T, Furuhata H, “ultrasound Facilitates Transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo”, 2000, Hum. Gene Ther., 2000, 11:1521-1528
[10]Huber PE, Pfisterer P, “In vitro and in vivo transfection of plasmid DNA in the dunnung prostate tumor R3327-AT1 is enhanced by focused ultrasound”, Gene Ther.,2000,7:1516-1525
[11]Huber PE, Jenne J, Debus J, Wannenmacher MF, Pfisterer P, “A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells”, Ultra. Med. & Biol., 1999, 25:1451-1457
[12]Leighton T, “The acoustic bubble”, New York: Academic Press
[13]Coleman AJ, Saunders JE, Crum LA, Dyson M, “Acoustic cavitation generated by an extracorporeal shockwave lithotripter”, Ultra. Med. & Bio., 1987, 13:69-76
[14]Zhong P, Lin H, Xi X, Zhu S, Bhogte ES, “Shock wave-inertial microbubble interaction: methodlogy, physical characterization, and bioeffect study”, J. Acoust Soc. Am, 1999, 105:1997-2009
[15]Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R, “Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle”, Gene Ther., 2002, 9:372-380
[16]Lu QL, Liang H-D, Partridge T, Blomley MJK, “Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage ”, Gene Ther.,2003, 10:396-405
[17]Huber PE, Mann MJ, Melo LG, Ehsan A, Kong D, Zhang L, Rezvani M, Peschke P, Jolesz F, Dzau VJ, Hynynen K, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery”, Gene Ther., 2003, 10:1600-1607
[18]Greenleaf WJ, Bolander ME, Sarkar G, Goldrin MB, Greenleaf JF, “Artifical cavitation nuclei significantly enhance acoustically induced cell transfection”, Ultra. Med. & Bio., 1998, 24:587-595
[19]Medel M, Peters EC, Leodolter S, “The use of color-coded Doppler sonography in the diagnosis of breast cancer”, Anticancer Res., 1994, 14:2449-2551
[20]Lee F, Bahn DK, Mchugh TA, Kumar AA, Badalament RA, “Cryosurgery of prostate cancer. Use of adjuvant hormonal therapy and temperature monitoring-a one year follow-up”, Anticancer Res., 1997, 17:1511-1515
[21]Huber S, “Doppler ultrasound in the diagnosis of breast lesions”, Anticancer Res., 1999, 18:2147-2150
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 2.王濟昌(1996)景觀生態學與都市景觀設計,規劃與設計學報,1(3):1-8。
2. 6.江博能、王明光、葉學文(1999)塔塔加鞍部森林、草原間的消長,土壤與環境,2(4):317-332。
3. 9.李鏐(1991)草坪草種及種植,中華民國雜草學會會刊,12(1):67-71頁。
4. 12.花炳榮(1994)陽明山國家公園原生植物種源保存及培育方法之研究,國家公園學報,5(1):73-87。
5. 13.何敏(1995)高爾夫球場佔用國有土地之探討,大專體育,23:75-77。
6. 21.周天穎、雷祖強與陳駿賢(2003)遙測與景觀分析技術於崩塌地判釋與變遷之研究,中華水土保持學報,34(4):252-268。
7. 22.林信輝(1991)水土保持草類對主要環境因子之生理反應,中華民國雜草學會會刊,12(1):41-53。
8. 26.林裕彬、鄧東波、吳振發(2001)景觀生態計量方法於農業景觀生態系統之空間結構探討,農業工程學報,47(2):74-91。
9. 28.林裕彬、曾正輝、鄧東波(2002)景觀生態指數於集水區整體景觀時空間型態變遷探討,農業工程學報,48(1):64-81。
10. 38.張秀燕、張育森(1997)土壤壓實對五種草坪植物生育之影響,中國園藝,43(3)249-259。
11. 39.張秀燕、張育森(1997)依營養特徵編列暖季草坪植物檢索表及區別特徵圖鑑之研究,中國園藝,43(2):159-173。
12. 40.張俊彥(2002)農村景觀生態之復育與創造,造園季刊,42:75-92。
13. 47.郭寶章(1999)內蒙古草原生之旅,現代育林,14(2):37-42。
14. 51.郭毓仁(2001)高爾夫球場永續環境之建立,造園學報,7(2):49-70。
15. 55.陳紫娥(1995)高爾夫球場之環境衝擊的研究,工程環境會刊,14:39-58。