(3.235.139.152) 您好!臺灣時間:2021/05/08 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗遠
研究生(外文):Tzong-Yuan Tsai
論文名稱:結合動態X光及電腦骨骼模型量測正常人與前十字韌帶缺損患者之膝關節三維運動
論文名稱(外文):Measurement of the Kinematics of Normal and ACL Deficient Knees Using Fluoroscopy with Computer Bone Models
指導教授:呂東武呂東武引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:膝關節運動學電腦骨骼模型動態X光動作分析
外文關鍵詞:video-fluoroscopy systemcomputer modelsmotion analysisknee joint kinematics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
截至目前為止,並沒有一種量測方法可以在非侵入式的情況下,量測活體骨骼三維運動學。本研究的目的之ㄧ便是發展一種量測方法,以準確得到關節的運動學資料。
本研究使用動態X光配合電腦骨骼模型,量測活體關節三維運動學。動態X光紀錄動態關節影像;電腦斷層掃描,得到骨骼之斷面影像。將骨骼斷面影像重建為立體骨骼模型,另一方面,使用程式模擬動態X光系統,在其中將模型投影至影像平面,藉由最佳化方法控制模型位置,推估實驗時模型之空間位置及方向。其中,最佳化運算花費的時間遠低於過去文獻方法所需時間。同時,本方法能夠方便、快速的應用在各個不同關節的運動學量測。
研究結果發現,正常人膝關節進行自主伸屈運動,無論無載重或有載重狀況,其伸直與彎曲過程的運動模式皆具有相似性。正常人自主伸屈之運動模式也符合迴旋機制(screw-home mechanism)。前十字韌帶缺損(ACLD)患者之膝關節在無載重自主運動時,其伸直與彎曲過程的運動模式較為不穩定,與正常人膝關節運動模式不同。同時,其運動模式也不符合正常膝關節之迴旋機制。ACLD患者之膝關節在載重自主運動時,其伸直與彎曲過程的運動模式相較於無載重狀況較為穩定,推測之可能原因為拮抗肌肉共同作用造成穩定性提高之結果。
未來,希望能應用我們所發展的方法,量測不同關節及其他骨骼肌肉系統疾患,以利未來骨科、復健科、物理治療、職能治療、運動醫學、電腦輔助手術與人工關節設計等領域的進步。
Knowledge of the kinematics of the knee is essential for the understanding of its function. To the best knowledge of the author, no study has investigated the in vivo kinematics of the knee using non-invasive method. The purposes of the study were to develop a non-invasive method for the determination of three-dimensional (3D) dynamic skeletal motions in vivo using fluoroscopy and to apply this method to the study of the knee kinematics during isolated knee flexion/extension under loaded and unloaded conditions in normal and anterior cruciate ligament deficient (ACLD) subjects.

The new method involves the match of two-dimensional (2D) fluoroscopic images of the knee during motion with projections of the computer knee models reconstructed from serial computer tomography images. The 3D knee position that produced best-matched projection with the fluoroscopic image was then taken as the special position of the tested knee. Computer simulations were performed and results show an estimate accuracy of 1 mm and 0.5 degrees. A rotating stage was constructed induce to control accurately the motion of a cadaver calcaneus for validation of the study. The result of our validation experiment showed that the accuracy is within 0.8 degrees and 1.9 mm for orientation and translation respectively.

The results of the in vivo studies showed that screw home mechanism existed and movement of unloaded knee can be described by an envelope of active flexion. In normal subjects, patterns of both unloaded and loaded active motion were similar to those of reported in the literature. However, the variation of the active motion in loaded condition was bigger than that in unloaded condition which may be due to the variation of muscle control to counteract the external forces. In ACLD subjects, either unloaded or loaded active motions at knee were different from those in the normal ones. The results indicated that the ACL played an important role in the control of the stability and mobility of normal knee motions.
目錄………………………………………………………………………i
表目錄 …………………………………………………………………iii
圖目錄……………………………………………………………………v
第壹章 緒論……………………………………………………………1
第一節 研究背景………………………………………………………………1
第二節 膝關節之功能解剖構造………………………………………………2
第三節 膝關節之運動學………………………………………………………5
第四節 文獻回顧………………………………………………………………7
一、試體量測………………………………………………………………7
二、活體量測………………………………………………………………9
(1)立體攝影術……………………………………………………9
(2)醫學影像分析 ………………………………………………10
第五節 研究目的 ……………………………………………………………17
第貳章 實驗材料及流程……………………………………………18
第一節 受試者 ………………………………………………………………18
第二節 實驗設備 ……………………………………………………………18
一、硬體設備 ……………………………………………………………18
二、軟體設備 ……………………………………………………………21
第三節 系統校正實驗流程 …………………………………………………22
第四節 驗證實驗流程 ………………………………………………………22
第五節 臨床實驗流程 ………………………………………………………23
第參章 系統成像及校正……………………………………………25
第一節 系統成像原理 ………………………………………………………25
第二節 校正方法 ……………………………………………………………26
第三節 系統校正結果 ………………………………………………………31




第肆章 模型建立與資料分析………………………………………33
第一節 三維模型……………………………………………………………33
第二節 關節運動學描述……………………………………………………35
第三節 模型投影輪廓………………………………………………………40
第四節 實驗輪廓決定………………………………………………………43
第五節 最佳化方法…………………………………………………………44
第六節 模擬動態X光投影介面……………………………………………46
第七節 電腦模擬結果………………………………………………………50
第伍章 驗證結果……………………………………………………53
第一節 實驗驗證……………………………………………………………53
一、靜態驗證結果………………………………………………………54
二、動態驗證結果………………………………………………………57
第二節 討論…………………………………………………………………59
第陸章 膝關節自主運動……………………………………………61
第一節 無載重之膝關節自主運動…………………………………………61
第二節 載重狀態之膝關節自主運動………………………………………73
第三節 以螺旋軸定理觀察自主運動………………………………………82
第四節 討論…………………………………………………………………88
第陸章 總結…………………………………………………………90
參考文獻………………………………………………………………92
Cole GK, Nigg BM, Ronsky JL and Yeadon MR. Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng 1993; 115: 344-9
Friden, T., Roberts, D. and Movin, T., 1998. Function after anterior cruciate ligament injuries-influence of visual control and proprioception. Acta Orthop Scand, 69, 590-594.
Friden, T., Roberts, D. and R., Z., 1997. Proprioception after an acute knee ligament injury-a longitudical study on 16 consecutive patients. J Orthop Res, 7, 637-644.
Fujie, H., Livesay, G. A., Woo, S. L.-Y., Kashiwaguchi, s. and Blomstorm, G., 1995. The use of a universal force-moment sensor to determine in-situ forces in ligaments: A new methodology. J. Biomech. Eng. 117, 1-7.
Fujie, H., Mabuchi, K., Woo, S. L.-Y., Livesay, G. A., Arai, S. and Tsukamoto, Y., 1993. The use of robitics technology to study human joint kinematics: A new methodology. J. Biomech. Eng. 115, 211-217.
Grood ES and Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105: 136-44
Kadaba, M. P., Ramakrishnan, H. K. and Wootten, M. E., 1990. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8, 383-392.
Lafortune, M. A., Cavanagh, P. R., Sommer, H. J. r. and Kalenak, A., 1992. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25, 347-357.
Lu, T. W. and O''Connor, J. J., 1999. Bone position estimation from skin marker co-ordinates using globla optimisation with joint constraints. J. Biomech. 32, 129-134.

Matsumoto, H., Seedhom, B. B., Suda, Y., Otani, T. and Fujikawa, K., 2000. Axis location of tibial rotation and its change with flexion angle. Clin. Orthop. Relat. Res. 371, 178-182.
Moore, K. L. and Dalley, A. F., 1999, Clinical oriented anatomy. Lipponcott Williams & Wilkins, Philadelphia.
Nordin, M. and Frankel, V. H., 2001, Basic biomechanics of the musculoskeletal system, 3rd Ed. Lipponcott Williams & Wilkins, Philadelphia.
Ramsey, D. K., Lamontagne, M., Wretenberg, P. F., Valentin, A., Engstr�卌, b. r. and Ne''meth, G., 2001. Assessment of functional knee bracing: An in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee. Clin. Biomech. 16, 61-70.
Selvik, G. r., 1989. Roentgen stereophotogrammetry. Acta Orthop. Scand. 60[Supplement]232,
Torzilli, P. A., Greenberg, R. L. and Insall, J., 1981. An in vivo biomechanical evaluation of anterior-posterior motion of the knee. J. Bone Jt. Surg., Am. Vol. 63-A, 960-968.
Wilson, D. R., Feikes, J. D., Zavatsky, A. B. and O''Connor, J. J., 2000. The components of passive knee movement are coupled to flexion angle. J. Biomech. 33, 465-473.
Wilson, D. R., Feikes, J. J. and O''Connor, J. J., 1998. Ligaments and articular contact guide passive knee flexion. J. Biomech. 31, 1127-1136.

莊克士, “醫學影像物理學”, 合記圖書出版社, 2001

傅仰傑, “結合動態X光及電腦骨骼解剖模型量測人體膝關節之三維運動”,
台灣大學醫學工程學研究所碩士論文, July 2003

張智星, “Matlab程式設計與應用”, 清蔚科技股份有限公司, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔