(3.238.173.209) 您好!臺灣時間:2021/05/15 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱之文
研究生(外文):Chih-Wen Chu
論文名稱:探討酵母菌第三腺嘌呤核苷二磷酸核醣化因子結合蛋白Afi1p之功能
論文名稱(外文):Functional characterization of yeast Arf3p interacting protein Afi1p
指導教授:李芳仁
指導教授(外文):Fang-Jen S. Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:78
中文關鍵詞:腺嘌呤核苷二磷酸核醣化因子酵母菌
外文關鍵詞:Afi1pyeastArf3pARF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ADP-ribosylation factors (ARFs) are highly conserved small GTP-binding proteins and are critical components of vesicular trafficking in eukaryotic cells. yArf3p, in spite of its similarity to mammalian ARF6, is not required for fluid-phase or mating-type receptor-mediated endocytosis but involved in polarity development. To dissect more detailed functions of yARF3, a constitutively active form of yArf3p, Q71LdN17, was used to search for interacting proteins by yeast two-hybrid screening. Afi1p (YOR129C) was identified to specifically interact with GTP-bound yArf3p through its N terminus. Overexpressed GFP-fused Afi1p localized at the plasma membrane and nucleus, which was not affected by yARF3 disruption; however, Afi1p was partially involved in yArf3p plasma membrane targeting and polarization to the emerging bud. Afi1p and yArf3p interacted with each other in vivo and colocalized at the plasma membrane. AFI1 disruption as well as yARF3 disruption showed no growth defect and exhibited budding pattern abnormality and partially delayed actin patch polarization to the bud. Double deletion of these two genes did not exacerbate these defects, implying that Afi1p and yArf3p play roles in the same pathway determining polarity and regulating actin organization. Both Afi1p and yArf3p were not involved in v-SNARE Snc1p recycling pathway. Moreover, Afi1p expression was induced by �� factor stimulation and was cell-cycle-dependent. Afi1p was required for the maintenance of proper shmoo morphology, but Fus1p polarization to the shmoo tip was not affected by AFI1 disruption. Nuclear localization of GFP-Afi1p was not required for its function in mating morphogenesis. These findings suggested that Afi1p acts upstream of yArf3p to participate in polarity development and also plays a role in maintenance of shmoo morphology.
中文摘要 ………………………………………………………………1
Abstract ……………………………………………………………………………2
Abbreviations …………………………………………………………………………3
Introduction …………………………………………………………………………4
Materials and methods ………………………………………………………..……..13
Results
Identification of yArf3p interacting proteins ……………………………….…..23
N terminus of Afi1p is required for its interaction with yArf3p ……………….23
Endogenous Afi1p protein level is very low …………………………………...24
The expression level of endogenous Afi1p is tightly regulated ………………..24
AFI1 is a nonessential gene and is not synthetic lethal with yARF3 …………..25
Overexpressed GFP-Afi1p was localized mainly at the plasma membrane and nucleus …………………………………………………………………….…...25
Afi1p can interact with yArf3p in vivo …………………………………….…..26
Arf3p-GFP localization is affected by AFI1 disruption but not vice versa.….…27
Afi1p is involved in budding site selection as well as yArf3p ……………....…27
Both yArf3p and Afi1p are indirectly involved in actin patch polarization …....28
Neither yArf3p nor Afi1p participates in Snc1p recycling pathway ……….…..29
Afi1p is involved in maintenance of mating morphogenesis …………………..29
GFP-Afi1p co-localizes with Arf3p-DsRed at the plasma membrane ….……...30
Exclusion of GFP-Afi1p from the nucleus did not affect the shmoo morphology…………………………………………………………………….31
Discussion …………………………………………………………………………...33
Tables ……………………………….………………………………………………..41
Figures ……………………………………………………………………………….46
References …………………………………………………………………………...70
Altschuler, Y., Liu, S. -H., Katz, L., Tang, K., Hardy, S., Brodsky, F., Apodaca, G., and Mostov, K. (1999). ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell Biol. 147, 7-12

Bagnat, M. and Simons, K. (2002). Cell surface polarization during yeast mating. Proc. Natl. Acad. Sci. USA 99, 14183-14188

Barlowe, C. (1998). COPII and selective export from the endoplasmic reticulum. Biochim. Biophys. Acta 1404, 67-76

Bevis, B.J. and Glick, B.S. (2002). Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotech. 20, 83-87

Boman, A.J., Zhang, C., Zhu, X., and Kahn, R.A. (2000). A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241-1255

Chant, J. (1999). Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15, 365-391

Chant, J., Mischke, M., Mitchell, E., Herskowitz, I., and Pringle, J. R. (1995). Role of Bud3p in producing the axial budding pattern of yeast. J. Cell Biol. 129, 767-778

Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C.L., and Chabre, M. (1996). A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-484

Clark, J., Moore, L., Krasinskas, A., Way, J., Battey, J., Tamkun, J., and Kahn, R.A. (1993). Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes. Proc. Natl. Acad. Sci. USA 90, 8952-8956

Clodi, M., Vollenweider, P., Klarlund, J., Nakashima, N., Martin, S., Czech, M.P., and Olefsky, J.M. (1998). Effects of general receptor for phosphoinositides 1 on insulin and insulin-like growth factor I-induced cytoskeletal rearrangement, glucose transporter-4 translocation, and deoxyribonucleic acid synthesis. Endocrinology 139, 4984-4990

Cockcroft, S., Thomas, G.M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N.F., Truong, O., and Hsuan, J.J. (1994). Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523-526

D ’Souza-Schorey, C., Boshans, R.L., McDonough, M., Stahl, P.D., and van Aelst, L. (1997). A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445-5454

D’Souza-Schorey, C., Li, G., Colombo, M.I., and Stahl, P.D., (1995). A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175-1178

Dascher, C. and Balch, W.E. (1994). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437-1448

Dell’Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., and Bonifacino, J.S. (2000). GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81-94

Donaldson, J.G. (2003). Minireview. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573-41576

Donaldson, J.G. and Jackson, C.L. (2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475-482

Ferro-Novick, S. and Novick, P. (1993). The role of GTP-binding proteins in transport along the exocytic pathway. Annu. Rev. Cell Biol. 9, 575-599

Fleming, J.A., Vega, L.R., and Solomon, F. (2000). Function of tubulin binding proteins in vivo. Genetics 156, 69-80

Garcia-Ranea, J.A. and Valencia, A. (1998). Distribution and functional diversification of the Ras superfamily in Saccharomyces cerevisiae. FEBS Lett. 434, 219-225

Gehrung, S. and Snyder, M. (1990). The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and efficient mating. J. Cell Biol. 111, 1451-1464

Godi, A., Pertile, P., Meyers, R., Marra, P., DiTullio, G., Iurisci, C., Luini, A., Corda, D., and DeMatteis, M.A. (1999). ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi Complex. Nature Cell Biol .1, 280-287

Godi, A., Santone, I., Pertile, P., Devarajan, P., Stabach, P.R., Morrow, J.S., DiTullio, G., Polishuk, R., Petrucci, T.C., Luini, A., and DeMatteis, M.A. (1998). ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl. Acad. Sci. USA 95, 8607-8612.

Golemis, E.A. and Khazak, V. (1997). Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol. Biol. 63, 197-218

Goldstein, A.L. and McCusker, J.H. (1999). Yeast functional analysis reports. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553.

Harlow, E., and Lane, D. (1988). Antibodies: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Hirst, J., Lui, W.W., Bright, N.A., Totty, N., Seaman, M.N., and Robinson, M.S. (2000). A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67-80

Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., and Frohman, M.A. (1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-532

Huang, C.-F., Buu, L.-M., Yu, W.-L., and Lee, F.-J. S. (1999). Characterization of a novel ADP-ribosylation factor-like protein (yARL3) in Saccharomyces cerevisiae. J. Biol. Chem. 274, 3819-3827

Huang, C.-F., Liu, Y.-W., Tung, L., Lin, C.-H., and Lee, F.-J. S. (2003). Role of Arf3p in development of polarity, but not endocytosis, in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 3834-3847

Huh, W.-K., Falvo, J. V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O’Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691

Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168.

Jackson, C.L. and Casanova, J.E. (2000). Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60-67

Kahn, R.A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C., Clark, J., Amherdt, M., Roller, P., Orci, L., and Rothman, J.E. (1992). The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J. Biol. Chem. 267, 13039-13046

Kahn, R.A., Yucal, J.K., and Malhotra, V. (1993). ARF signaling: a potential role for phospholipase D in membrane traffic. Cell 75, 1045-1048

Kanoh, H., Willinger, B.T., and Exton, J.H. (1997). Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272, 5421-5429

Klausner, R.D., Donaldson, J.G., and Lippincott-Schwartz, J. (1992). Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071-1080

Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999). Yeast functional analysis reports. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963-972.

Lassing, I. and Lindberg, U. (1985). Specific interaction between phosphatidylinositol 4,5-phosphate and profilactin. Nature 314, 472-474

Lee, F.J., Huang, C.F., Yu, W.L., Buu, L.M., Lin, C.Y., Huang, M.C., Moss, J., and Vaughan, M. (1997). Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J. Biol. Chem. 272, 30998-31005.

Lee, F.J., Stevens, L.A., Kao, Y.L., Moss, J., and Vanghan, M. (1994). Characterization pf a glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces cerevisiae. J. Biol. Chem. 269, 20931-20937.

Lewis, M.J., Nichols, B.J., Prescianotto-Baschong, C., Riezman, H., and Pelham, H. R. B. (2000). Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23–38

Longtine, M.S., McKenzie, A. III, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Yeast functional analysis reports. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961.

Mackin, N.A., Sousou, T.J., and Erdman, S.E. (2004). The PXL1 gene of Saccharomyces cerevisiae encodes a paxillin-like protein functioning in polarized cell growth. Mol. Biol. Cell 15, 1904-1917

Madden, K. and Snyder, M. (1998). Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol. 52, 687-744

Millar, C. A., Powell, K. A., Hickson, G. R., Bader, M. F., and Gould, G. W. (1999). Evidence for a role for ADP-ribosylation factor 6 in insulin-stimulated glucose transporter-4 (GLUT4) trafficking in 3T3-L1 adipocytes. J. Biol. Chem. 274, 17619-17625.

Moss, J. and Vaughan, M. (1998). Molecules in the ARF orbit. J. Biol. Chem. 273, 21431-21434

Nagel, W., Schilcher, P., Zeitlmann, L., and Kolanus, W. (1998). The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function. Mol. Biol. Cell 9, 1981-1994

Norman, J.C., Jones, D., Barry, S.T., Holt, M.R., Cockcroft, S., and Critchley, D.R. (1998). Arf1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J. Cell Biol. 143, 1981-1995

Pacheco-Rodriguez, G., Meacci, E., Vitale, N., Moss, J., and Vaughan, M. (1998). Guanine nucleotide exchange on ADP-ribosylation factors catalyzed by cytohesin-1 and its Sec7 domain. J. Biol. Chem. 273, 26543-26548

Panic, B., Whyte, J.R.C., and Munro, S. (2003). The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405-410

Pasqualato, S., Menetrey, J., Franco, M., and Cherfils, J. (2001). The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2, 234-238

Peters, P.J., Hsu, V.W., Ooi, C.E., Finazzi, D., Teal, S.B., Oorschot, V., Donaldson, J.G., and Klausner, R.D. (1995). Overexpression of wild type and mutant ARF1 and ARF6: distinct perturbations of non-overlapping membrane compartments. J. Cell Biol. 128, 1003-1017

Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., and Jackson, C.L. (1999). Brefeldin A acts to stabilize and abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275-285

Powner, D.J., Hodgkin, M.N., and Wakelam, M.J. (2002). Antigen-stimulated activation of phospholipase D1�� by Rac1, ARF6, and PKC alpha in RBL-2H3 cells. Mol. Biol. Cell 13, 1252-1262

Pringle, J.R., Preston, R.A., Adams, A.E.M., Sterns, T., Drubin, D.G., Haarer, B.K., and Jones, E.W. (1989). Fluorescence microscopy methods for yeast. Methods Cell Biol. 31, 357-435.

Pruyne, D. and Bretscher, A. (2000a). Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365-375

Pruyne, D. and Bretscher, A. (2000b). Polarization of cell growth in yeast. II. The role of the cortical actin cytoskeleton. J. Cell Sci. 113, 571-585

Radhakrishna, H., Al-Awar, O., Khachikian, Z., and Donaldson, J.G. (1999). Arf6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855-866.

Radhakrishna, H. and Donaldson, J.G. (1997). ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol .139, 49-61.

Radhakrishna, H., Klausner, R.D., and Donaldson, J.G. (1996). Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134, 935-947

Randazzo, P.A., Nie, Z., Miura, K., and Hsu, V. W. (2000). Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci. STKE 59, re1

Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J.D., Sheetz, M.P., and Meyer, T. (2000). Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221-228

Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell, S.P., and Young, R.A. (2000). Genome-wide location and function of DNA binding proteins. Science 290, 2306-2309

Roth, M.G. (1999a). Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9, 174-179

Roth, M.G. (1999b). Snapshots of ARF1: implications for mechanisms of activation and inactivation. Cell 97, 149-152

Rothstein, R.J. (1983). One-step gene disruption in yeast. Methods Enzymol. 101, 202-211

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Santy, L.C. and Casanova, J.E. (2001). Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 154, 599-610

Schweitzer, J. K. and D''Souza-Schorey, C. (2002) Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J. Biol. Chem. 277, 27210-27216.

Sewell, J.L. and Kahn, R.A. (1988). Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA 85, 4620-4624

Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Methods in Yeast Genetics, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Shin, O.H., Ross, A.H., Mihai, I., and Exton, J.H. (1999). Identification of arfophilin, a target protein for GTP-bound class II ADP-ribosylation factors. J. Biol. Chem. 274, 36609-36615

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273-3297

Stearns, T., Kahn, R.A., Botstein, D., and Hoyt, M.A. (1990a). ADP-ribosylation factor is an essential protein in Saccharomyces cerevisiae and is ensoded by two genes. Mol. Cell Biol. 10, 6690-6699

Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev. 81, 153-208

Tamkun, J.W., Kahn, R.A., Kissinger, M., Brizuela, B.J., Rulka, C., Scott, M.P., and Kennison, J.A. (1991). The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc. Natl. Acad. Sci. USA 88, 3120-3124

Valdez-Taubas, J. and Pelham, H.R.B. (2003). Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13, 1636-1640

Van Valkenburgh, H., Shem, J.F, Sharer, J.D., Zhu, X., and Kahn, R.A. (2001). ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J. Biol. Chem. 276, 22826-22837

Wooding, S. and Pelham, H.R.B. (1998). The dynamics of Golgi protein traffic visualized in living yeast cells. Mol. Biol. Cell 9, 2667–2680

Wysocka, M., Bialkowska, A., Micialkiewicz, A., and Kurlandzka, A. (2003). YOR129C, a new element interacting with Cnm67p, a component of the spindle pole body of Saccharomyces cerevisiae. Acta Biochimica Polonica 50, 883-890

Yang, C. Z. and Mueckler, M. (1999). ADP-ribosylation factor 6 (ARF6) defines two insulin-regulated secretory pathways in adipocytes. J. Biol. Chem. 274, 25297-25300.

Zakrzewska, E., Perron, E., Laroche, A., and Pallotta, D. (2003). A role for GEA1 and GEA2 in the organization of the actin cytoskeleton in Saccharomyces cerevisiae. Genetics 165, 985-995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪武雄,<後漢三國間的參軍>,《東吳歷史學報》,第9期,民92年3月。
2. 洪陸訓、張元祥,<中華民國政黨輪替後的文武關係與民主鞏固>,《東亞季刊》,第34卷第1期,民92。
3. 洪陸訓,<國防二法訂頒後的文武關係>,《新世紀智庫論壇》,第20期,2002。
4. 周道濟,<西漢君權與相權之關係>,《大陸雜誌》,第11卷第12期,民44年12月。
5. 李明峰,<漢末三國的荊州人才>,《史苑》,第59期,民88年1月。
6. 徐日輝,<諸葛亮「西和諸戎」政策考>,《中國邊政》,第143期,民88年3月。
7. 張金龍,<曹魏禁衛武官制度考論>,《漢學研究》,第19卷第2期,民90年12月。
8. 黃寬重,<中國歷史上武人地位的轉變:以宋代為例>,《歷史月刊》,第8期,民77年9月。
9. 溫登傑,<馬謖與街亭之敗>,《史苑》,第62期,民91年6月。
10. 詹士模,<東漢末三國時期的人口移動>,《嘉義大學學報》,第71期,民89年8月。
11. 鄒紀萬,<三國人才現象與人物類型>,《輔仁歷史學報》,第8期,民85年12月。
12. 鄒紀萬,<諸葛亮的家世、性格及其在隆中的社會關係>,《輔仁歷史學報》,第13期,民91年6月。
13. 廖伯源,<從漢代郎將職掌之發展論官制演變的一些特徵>,《中央研究院歷史語言研究所集刊》,第65本第4分,民83年12月。
14. 鄭曉時,<春秋時期的政軍關係>,《人文及社會科學集刊》,第6卷第2期,民83年6月。
15. Tillman, Hoyt Cleveland(田浩)”One Significant Rise in Chu-ko Liang’s Popularity: An Impact of the 1127 Jurchen Conquest,”《漢學研究》,第14卷第2期,民85年12月。