(35.168.111.204) 您好!臺灣時間:2020/07/04 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:鄭伊玲
研究生(外文):Yi-Ling Cheng
論文名稱:肺部上皮內襯液體對於微粒引起氧化傷害之影響
論文名稱(外文):Effect of pulmonary epithelial lining fluid on PM-induced oxidative damage
指導教授:鄭尊仁鄭尊仁引用關係
指導教授(外文):Tsung Jen Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:肺部上皮內襯液體反應性氧化物種大氣微粒
外文關鍵詞:Reactive oxygen species (ROS)Epithelial lining fluid(ELF)Particulate matter(PM)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:351
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去研究指出,暴露微粒污染物會引起肺部細胞氧化壓力增加,進一步引發發炎反應,然而大氣微粒組成複雜,究竟是何種成分引起細胞毒性有待釐清。過去研究發現細胞暴露在超細粒徑微粒或含有多種組成的汽機車燃燒微粒都能引起細胞產生氧化性物種(Reactive Oxygen Species, ROS),造成氧化壓力的上升。然而人類肺部表面具有多種抗氧化成分的上皮內襯液體(epithelial lining fluid; ELF),能與進入呼吸道的微粒污染物反應減少細胞氧化傷害,但其影響機制並不清楚。本研究目的為探討肺部上皮內襯液體對於各種微粒污染物成分引起細胞氧化傷害的影響。
我們以非細胞系統及細胞系統進行暴露實驗並參考Guobin等人的研究,配製人類肺部上皮內襯液體進行實驗。在非細胞系統中進行各種微粒污染物暴露後的ROS量測,而在細胞系統中利用轉移盤(transwell)進行細胞實驗,在transwell上添加人類肺部上皮內襯液體與肺泡上皮細胞(A-549),測量各種微粒成分與細胞反應後產生之ROS、評估細胞DNA單股斷裂情形及發炎前趨物IL-8量測。微粒濃度方面,選用能產生ROS的最小濃度進行實驗,在超細粒徑碳黑微粒(ufCB)0, 50, 150�慊/ml、過渡金屬(FeSO4)0, 100, 500�嵱及柴油引擎有機萃取物(Diesel Exhaust Particles extract, DEP extract)0, 25, 50�慊/ml下進行4小時的暴露。使用DCFH assay量測ROS、彗星分析法評估細胞DNA單股斷裂及酵素免疫法量測發炎前趨物IL-8。
研究結果顯示,在非細胞系統中,暴露ufCB及FeSO4各種濃度所產生的ROS有隨暴露濃度及暴露時間增加呈現上升的趨勢。此外,在添加ELF的環境下暴露ufCB、FeSO4及 DEP萃取物後,ROS顯著降低(p<0.05),扣除背景值的ROS後,相較於未添加ELF系統的暴露下平均分別減少100%、56.5%及1%。在細胞實驗部分,暴露ufCB、FeSO4及DEP萃取物後,添加ELF於細胞表面能顯著減少氧化性物種產生,相較於未添加ELF系統而言,分別減少91%、83%及1%。在DNA單股斷裂方面,發現FeSO4及 DEP萃取物暴露皆能較控制組引起顯著的DNA單股斷裂,在高濃度暴露下DNA單股斷裂分別較控制組增加67%及23%,然而暴露ufCB的效應並不明顯。此外,添加ELF的ufCB、FeSO4及 DEP萃取物的暴露並不會造成DNA單股斷裂。細胞激素IL-8的分泌在各微粒中並無顯著差異。
研究結果指出,在非細胞或細胞暴露系統中,ufCB、FeSO4及DEP萃取物皆能造成ROS的產生,增加的比率以ufCB最大。此外,添加ELF能有效減少暴露後產生的ROS,減少的比率也以ufCB最大。此外ELF還能進一步保護肺泡上皮細胞免於氧化壓力的傷害。


Previous studies have reported that exposure to particulate matter(PM)induces oxidative stress and respiratory tract inflammation. The component of PM responsible for this health effect remained unclear. Pulmonary epithelial lining fluid(ELF)consists of various antioxidants, which can protect lung cells against the oxidative damage of PM. However the exact mechanism remains unclear. The aim of this study was to determine the effect of ELF on PM-induced oxidative damage.
This study was conducted with and without epithelial cells. We also use synthetic human epithelial lining fluids (ELF, Guobin et al., 1999.) in both cell and cell free system. In cell free system, total ROS was measured with DCFH assay after exposure to ultrafine carbon black (ufCB; at 0, 50, 150ug/ml), transitional metal (FeSO4; at 0,100, 500uM) and organic component(DEP extract; at 0, 25, 50ug/ml). Subsequently, we established an in vitro transwells exposure system consisting with or without of ELF. A549 cells were exposed to particles for four hours. ROS was then measured using DCFH assay and DNA breakage was determined by single-cell gel electrophoreses (Comet assay).
The results indicated that in cell free system, the amounts of ROS increased with exposure concentration and exposure time. ELF significantly decreased ROS by 100% 、56.5% and 1% as compared to culture medium after ufCB、FeSO4 or DEP extract exposure(p<0.05). Furthermore, in cell system, ROS decreased 91%、 83%and 1% with the treatment of ELF compared to culture medium after cells exposed to ufCB 、FeSO4 and DEP extract. ELF also can decrease DNA single-strand breakage. Furthermore, there was no difference on IL-8 secretion after exposure to different componemts.
Our results suggest that ELF can decrease total ROS induced by ultrafine carbon black、FeSO4 and DEP extract. Therefore ELF can protect A549 cells from oxidative damage.


摘 要 i
Abstract iii
第一章 前言 8
第二章 文獻回顧 10
2.1微粒的健康效應 10
2.2懸浮微粒的毒性來源 11
2.3微粒毒性與氧化壓力 13
2.3.1 反應性含氧物種與氧化壓力 13
2.3.2微粒毒性與氧化壓力:超細粒徑微粒、過渡金屬及有機物 14
2.3.3其他與ROS的相關研究 16
2.4 肺部抗氧化防禦機制 17
2.4.1肺部上皮內襯液體(ELF) 17
2.4.2微粒污染物與ELF的相關研究 19
2.5氧化傷害效應指標 20
2.5.1發炎反應 20
2.5.2 DNA斷裂與慧星分析 21
第三章 材料與方法 24
3.1 實驗流程 24
3.2 配製ELF.(epithelial lining fluid) 25
3.3微粒、金屬溶液及DEP萃取物配製 25
3.4細胞培養 26
3.5細胞計數及存活率分析 27
3.6微粒、過渡金屬及DEP萃取物暴露 27
3.7 氧化自由基分析 28
3.8 DNA單股斷裂分析 30
3.9 Interleukin-8 分析 31
3.10統計分析 31
第四章 實驗結果 32
4.1氣懸微粒成分分析 32
4.2 暴露時間、濃度與ROS之關係 32
4.3 細胞存活率 32
4.4 ufCB、FeSO4及DEP萃取物暴露對ROS影響 32
4-5 添加ELF對於ufCB、FeSO4及DEP萃取物暴露產生之ROS影響 33
4.6氣懸微粒或ufCB 、FeSO4共同暴露對於細胞ROS的影響 33
4.7不同暴露系統對於ufCB、FeSO4及DEPextract暴露產生DNA單股斷裂影響 34
4.8細胞激素的測量結果 34
第五章 討論與結論 35
5.1 微粒成分與細胞存活率 35
5.2 ufCB、FeSO4及DEP萃取物的ROS 36
5.3 暴露ufCB、FeSO4及DEP萃取物後對於 DNA單股斷裂的影響 38
5.4 ELF對於暴露ufCB、FeSO4及DEP萃取物後產生ROS之影響 38
5.5 ELF對暴露ufCB、FeSO4及DEP萃取物後引起DNA單股斷裂之影響 39
5.6 ROS與細胞激素IL-8之影響 39
5.7 細胞外ROS與DNA單股斷裂之相關 41
5.8 影響ROS量測的因素 41
第六章 參考文獻 44

圖表目錄

表1 ELF的組要成分及濃度 56
表2 暴露大氣微粒所含元素成分及濃度 57
表3 各種暴露狀況下的細胞存活率 58
表4 不同暴露系統中有無細胞對於螢光強度值的影響 59
表5 DEP 有機萃取物對於細胞及非細胞系統中螢光強度值的影響 60
表6 添加ELF能減少ROS的百分比 61
表7 不同暴露狀況下彗星分析結果 62
表8 不同暴露狀況下對於細胞激素IL-8的影響 63
圖1 氧化物新陳代謝 19
圖2 實驗流程圖 24
圖3散射螢光值與H2O2濃度之檢量線 64
圖4-1 FeSO4配置時間與螢光值之關係 65
圖4-2 超細粒徑碳黑微粒(ufCB)配置時間與螢光值之關係 65
圖5 暴露四小時後A-549細胞存活率 66
圖6 有無添加ELF對於暴露過渡金屬FeSO4 後ROS之影響 67
(a) 非細胞系統
(b) 細胞系統
圖7 有無添加ELF對於暴露超細粒徑碳黑微粒ROS之影響 68
(a) 非細胞系統
(b) 細胞系統
圖8有無添加ELF對於DEP萃取物暴露與螢光值之影響 69
(a) 非細胞系統
(b) 細胞系統
圖9 細胞共同暴露FeSO4及ufCB對於螢光值之影響 70
圖10 細胞暴露大氣微粒4小時後螢光值之比較 71
圖11 慧星分析結果;暴露FeSO4溶液4小時後,DNA單股斷裂情形72
圖12 慧星分析結果;暴露ufCB 4小時後,DNA單股斷裂情形 73
圖13 慧星分析結果,添加ELF對於暴露FeSO4後DNA單股斷裂情形74
圖14 慧星分析結果,添加細胞培養液或ELF對於細胞暴露DEP萃取物4小時後DNA單股斷裂的情形 75
圖15 不同暴露物其非細胞ROS值與DNA單股斷裂之相關 76
圖16非細胞ROS值與DNA單股斷裂之相關 77
附錄一 ELF中各種抗氧化酵素之代謝方程式 78
附錄二 細胞內抗氧化防禦能力示意圖 79
附錄三 細胞實驗使用的暴露系統示意圖 80
附錄四 彗星分析影像 81



Anderson M, Svartengren M, Philipson K, and Camner P. Regional human lung deposition studied by repeated investigations. J Aersol Sci. 19:1121-1124, 1998.
Antonini JM, Clarke RW, Krishna Murthy GG, Sreekanthan P, Jenkins N, Eagar TW, and Brain JD. Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicol Lett, 98: 77-86, 1998.
Atkinson RW, Bremner SA, Anderson HR, Strachan DP, Bland JM, and de Leon AP. Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. Arch Environ Health 54: 398-411, 1999.
Aust AE, Ball JC, Hu AA, Lighty JS, Smith KR, Straccia AM, Veranth JM, and Young WC. Particle characteristics responsible for effects on human lung epithelial cells. Res Rep Health Eff Inst. 110: 1–65, 2002.
Avissar N, Finkelstein JN, Horowitz S, Willey JC, Coy E, Frampton MW, Watkins RH, Khullar P, Xu YL, and Cohen HJ. Extracellular glutathione peroxidase in human lung epithelial lining fluid and in lung cells. Am J Physiol. 270: L173-82, 1996.
Bastacky J, Goerke J, Lee CY, Yager D, Kenaga L, Koushafar H, Hayes TL, Chen Y, and Clements JA. Alveolar lining liquid layer is thin and continuous: low-temperature scanning electron microscopy of normal rat lung. Am Rev Respir Dis 147:A148, 1993.
Bhalla DK. Oxidative effects and inflammatory responses in the lung, J Toxicol Environ Health A. 61: 3-8, 2000.
Bradley Stringer and Lester Kobzik. Environmental particulate-mediated cytokine production in lung epithelial cells (A549): role of preexisting inflammation and oxidant stress. J Toxicol Environ Health A. 55: 31-44, 1998.
Brandt R, and Keston AS. Synthesis of diacetyldichlorofluorescin: a stable reagent for fluorometric analysis. Anal Biochem.11:6, 1965.
Brown DM, Stone V, Findlay P, MacNee W, and Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 57: 685– 691, 2000.
Brown DM, Wilson MR, MacNee W, Stone V, and Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199, 2001.
Cantin AM, Fells GA, Hubbard RC, and Crystal RG. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest 86: 962-971, 1990.
Cantin, AM, North SL, Hubbard RC, and Crystal RG. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol 63: 152-157, 1987.
Carter JD, Ghio AJ, Samet JM, and Devlin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 146: 180-8, 1997.
Catheart R, Schwiers E, and Ames BN. Detection of picomole levels of hydroperoxides using fluorescent dichlorofluorescein assay. Anal. Biochem.134: 111-6, 1983.
Chao CC, Park SH, and Aust AE. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys. 326:152-7, 1996.
Cheng TJ, Kao HP, Chan CC, and Chang WP. Effects of ozone on DNA single-strand breaks and 8-oxoguanine formation in A549 cells. Environ Res 93: 279-284, 2003.
Comhair SA, Bhathena PR, Farver C, Thunnissen FB, and Erzurum SC. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J 15: 70–78, 2001.
Comhair, Suzy A.A., and Serpil C. Erzurum. Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol hysiol 283: L246–L255, 2002.
Daryl WF, Peggy LO, Kim LO. The comet assay: a comprehensive review. Mutat. Res.339: 35-59,1995.
Diaz-Llera S, Gonzales-Hernandez Y, Prieto-Gonzalez EA, and Azoy A.Genotoxic effect of ozone in human peripheral blood lymphocytes. Mutat Res. 517: 13-20, 2002.
Dick CA, Brown DM, Donaldson K, and Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particles type. Inhal Toxicol. 15: 39-52, 2003.
Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, and Speizer FE. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329:1753-9, 1993.
Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, and Nemery B. Genotoxic Effects of Carbon Black Particles, Diesel Exhaust Particles, and Urban Air Particulates and Their Extracts on a Human Alveolar Epithelial Cell Line (A549)and a Human Monocytic Cell Line (THP-1). Environ Mol Mutagen. 37: 155-63. 37:155–163, 2001.
Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, and Stone V. The pulmonary toxicology of ultrafine particles. J. Aerosol Med. 15: 213–220, 2002.
Driscoll KE. TNF and MIP2: Role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett. 112–113:177–184, 2000.
Dye JA, Adler KB, Richard JH, and Dreher KL. Role of soluble metals in oil fly ash-induced airway epithelial injury and cytokine gene expression. Am J Physiol 277: L498-L510, 1999.
Environmental Protection Agency (EPA). Environment Data of Taiwan in 1996, Republic of China, Taipei: Environment Protection Agency, Executive Yuan, Republic of China.
Ferin J, Oberdorster G, and Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 6: 535-42, 1992.
Frankel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther. 53: 127-66, 1992.
Gavett SH, Madison SL, Dreher KL, Winsett DW, McGee JK, and Costa DL. Metal and Sulfate Composition of Residual Oil Fly Ash Determines Airway Hyperreactivity and Lung Injury in Rats. Environ Res. 72:162-72, 1997.
Ghio AJ, Kennedy TP, Whorton AR, Crumbliss AL, Hatch GE, and Hoidal JR. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. Am J Physiol. 263: L511-8, 1992.
Gilmour PS, Brown DM, Lindsay TG, Beswick PH, MacNee W, and Donaldson K. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occup Environ Med. 53: 817– 822, 1996.
Halliwell B. Free radicals in Biology and Medicine. Oxiford unversity Press. New York. USA. 1999.
Haney JT, Connor TH, and Li L. Detection of ozone-induced single strand breaks in murine broncholalveolar lavage cells acutely exposed in vivo. Inhal Toxicol. 11: 331-41, 1999.
Harrison RM, and Yin J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ. 249 : 85-101, 2000.
Hatch GE. Comparative biochemistry of the airway lining fluid. In: Treatise on Pulmonary Toxicology, Vol. 1, Comparative Biology of the Normal Lung (RA Parent, ed). Boca Raton, FL: CRC Press, 617-632, 1992.
Heinrich U, Fuhst R, Rittinghausen S, Cruetzenberg O, Bellmann B, Koch W, and Levsen K. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol. 7: 533-556, 1995.
Huang X, Frenkel K, Klein CB, and Costa M. Nickel induces increased oxidants in intact cultured mammalian cell as detected by dichlorofluorescein fluorescence. Toxicol Appl Phammacol. 120: 29-36, 1993.
Ibald-Mulli A, Stieber J, Wichmann HE, Koenig W, and Peters A. Effects of air pollution on blood pressure: a population-based approach. Am J Public Health 91: 571– 577, 2001.
Jimenez LA, Drost EM, Gilmour PS, Rahman I, Antonicelli F, Ritchie H, MacNee W, and Donaldson K. PM10-exposed macrophages stimulate a proinflammatory response in lung epithelial cells via TNF-? Am J Physiol Lung Cell Mol Physiol 282: L237– L248, 2002.
Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicelli F, Duffin R, Drost EM, Hay RT, Donaldson K, and MacNee W. Activation of NF-�羠 by PM10 occurs via an iron mediated mechanism in the absence of I�羠 degradation. Toxicol Appl Pharmacol. 166:101–110, 2000.
Johnston CJ, Finkelstein JN, Gelein R, Baggs R, and Oberdorster G. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure. Toxicol Appl Pharmacol. 140: 154-63, 1996.
Juvin P, Fournier T, Boland S, Soler P, Marano F, Desmonts JM, and Aubier M. Diesel particles are taken up by alveolar type II tumor cells and alter cytokines secretion. Arch Environ Health.57: 53-60, 2002.
Kadiiska MB, Burkitt MJ, Xiang QH, and Mason RP. Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation. J Clin Invest. 96(3):1653-7, 1995.
Kadiiska MB, Mason RP, Dreher KL, Costa DL, and Ghio AJ. In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chem Res Toxicol. 10: 1104-8, 1997.
Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med 60: 612-616, 2003.
Keston AS, and Brandt R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem. 11: 1,1965.
Kline JN, Cowden JD, Hunninghake GW, Schutte BC, Watt JL, Wohlford-Lenane CL, Powers LS, Jones MP, and Schwartz DA. Variable airway responsiveness to inhaled lipopolysaccharide. Am J Respir Crit Care Med. 160: 297-303,1999.
Kodavanti UP, Hauser R, Christiani DC, Meng ZH, McGee J, Ledbetter A, Richards J, and Costa DL. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol. Sci. 43: 204–212, 1998.
Kumagai Y, Arimoto T, Shinyashiki M, Shimojo N, Nakai Y, Yoshikawa T, and Sagai M. Generation of reactive oxygen species during interaction of diesel exhaust particle components with NADPH-cytochrome P450 reductase and involvement of the bioactivation in the DNA damage. Free Radic Biol Med. 22: 479-87, 1997.
LeBel CP, Ischiropoulos H, and Bondy SC. Evaluation of the probe 2'',7''-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 5: 227-31, 1992.
Lee CC, Liao JW, and Kang JJ. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/c mice.Toxicol Sci 79: 326-334, 2004.
Leoncini G, Maresca M, and Colao C. Oxidative metabolism of human platelets. Biochem. Int. 25: 647-655, 1991.
Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, and Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage.Environ Health Perspect. 111(4):455-60, 2003.
Li XY, Gilmour PS, Donaldson K, and Mac Nee W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 51: 1216–1222, 1996.
MacNee W, Bridgeman MME, Marsden M, Drost E, Lannan S, Selby C, and Donaldson K. The effects of N-acetylcysteine and glutathione on smoke-induced changes in lung phagocytes and epithelial cells. Am J Med 91: 60S–66S, 1991.
Mercer RR, Russell ML, and Crapo J.D. Mucous lining layers in human and rat airways. Am Rev Respir Dis 145: A355, 1992.
Meyer M, Schreck R, and Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-�羠 and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12: 2005–2015, 1993.
Min-Liang Kuo, Shiou-Hwa Jee, Ming-Hong Chou and Tzuu-Huei Ueng. Involvement of Oxidative stress in motorcycle exhaust particle-induced DNA damage and inhibition of intercellular communication. Mutation Research. 413: 143-150, 1998.
Monthly Statistics of Transportation and Communications. Department of Statistics, Ministry of Transportation and Communications, Taipei, Republic of China, July, 2003.
Mudway Ian S, Stenfors Nikolai, Duggan Sean T, Roxborough Heather, and Zielinski Hendrick. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fuid antioxidants. Arch Biochem Biophy 423: 200–212, 2004.
Mudway IS, and Kelly FJ. Modeling the interactions of ozone with pulmonary epithelial lining fluid antioxidants. Toxicol Appl Pharmacol. 148: 91-100, 1998.
Nauss K and the Diesel Working Group, in: Diesel Exhaust: A Critical Analysis of Emissions, Exposure and Health Effects: The Health Effects Institute, 1995.
Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, and Nemery B. Passage of Inhaled Particles Into the Blood Circulation in Humans. Circulation. 105: 411-414, 2002.
Oberdorster G, Gelein RM, Ferin J, and Weiss B. Association of particle air pollution and acute mortality:involvement of ultrafine particles?Inhal Toxicol. 7:111-124, 1995.
Ohtoshi T, Takizawa H, and Okazaki H. Diesel exhaust particles stimulate human airway epithelial cells to produce cytokines relevant to airway inflammatory in vitro. J Allergy Clin Immunol. 101: 778-785, 1998.
Pacht ER, and Davis WB. Role of transferrin and ceruloplasmin in antioxidant activity of lung epithelial lining fluid. J Appl Physiol. 64: 2092-2099, 1988.
Peter S. Gilmour, Irfan Rahman, Shizu Hayashi, James C. Hogg, Kenneth Donaldson, and William MacNee. Adenoviral E1A primes alveolar epithelial cells to PM10-induced transcription of interleukin-8. Am J Physiol Lung Cell Mol Physiol 281: L598 – 606, 2001.
Peters A, Liu E, Verrier RL, Schwartz J, Gold DR, Mittleman M, Baliff J, Oh JA, Allen G, Monahan K, and Dockery DW. Air pollution and incidence of cardiac arrhythmia. Epidemiology 11, 11-17, 2000.
Poli P, Buschini A, Restivo FM, Ficarelli A, Cassoni F, Ferrero I, and Rossi C. Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis. 14: 547-556, 1999.
Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, and Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 287: 1132-41, 2002.
Prahalad AK, Soukup JM, Inmon J, Willis R, Ghio AJ, Becker S, and Gallagher JE. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol Appl Pharmacol. 158: 81-91, 1999.
Quality of urban air review group. The Third report of the quality of urban air review group. Department of the Environment, London. 37–55, 1996.
Rahman I and MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16: 534–554, 2000.
Rahman I, and MacNee W. Role of transcription factors in inflammation matroy lung disease. Thorax.53: 601-612, 1998.
Rahman I, Mulier B, Gilmour PS, Watchorn T, Donaldson K, Jeffery PK, and MacNee W. Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-kappaB. Biochem Pharmacol. 62: 787-94, 2001.
Rennard SI, Basset G., Lecossier D, O’Donnell KM, Martin PG., and Crystal RG. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol. 60: 532-538, 1986.
Rojas E, Valverde M, Lopez MC, Naufal I, Sanchez I, Bizarro P, Lopez I, Fortoul TI, and Ostrosky-Wegman P. Evaluation of DNA damage in exfoliated tear duct epithelial cells from individuals exposed to air pollution assessed by single cell gel electrophoresis assay. Mutat Res. 468: 11-17, 2000.
Rosenkranz HS. Mutagenic nitroarenes, diesel emissions, particulate-induced mutations and cancer: an essay on cancer-causation by a moving target. Mutat Res 367: 65–72, 1995.
Sagai M, Saito H, Ichinose T, Kodama M, and Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic Biol Med. 14:37-47, 1993.
Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, Diaz E, Koutrakis P, Suh H, Tsuda A, and Godleski JJ. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med. 165: 1610–1617, 2002.
Slade R, Crissman K, Norwood J, and Hatch G. Comparison of antioxidant substances in bronchoalveolar lavage cells and fluid from humans, guinea pigs, and rats. Exp Lung Res 19: 469-484, 1993.
Song J and Ye SH. Study on the mutagenicity of diesel exhaust particles. Biomed Environ Sci 8: 240 –245, 1995.
Steerenberg PA, Zonnenberg JA, Dormans JA, Joon PN, Wouters IM, Van Bree L, Scheepers PT, and Van Loveren H. Diesel exhaust particles induced release of interleukin 6 and 8 by (primed)human bronchial epithelial cells (BEAS 2B)in vitro. Exper Lung Res. 24: 85-100, 1998.
Stephen S. Leonard, Suwei Wang, Xianglin Shi, Bryan S. Jordan, Vince Castranova and Michael A. Dubick. Wood smoke particles generate free radicals and cause lipid peroxidation, DNA damage, NF-κB activation and TNF-?release in macrophages, Toxicology 150: 147 – 157, 2000.
Stone V, Shaw J, Brown DM, MacNee W, Faux SP, and Donaldson K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicology in vitro 12: 649-659, 1998.
Stringer B, and Kobzik L. Environmental particulate-mediated cytokine production in lung epithelial cell (A549): role of preexisting inflammation and oxidative stress. J Toxicol Environ Health A.155: 31-34, 1998.
Sun G, Crissman K, Norwood J, Richards J, Slade R, and Hatch GE. Oxidative interactions of synthetic lung epithelial lining fluid with metal-containing particulate matter. Am J Physiol Lung Cell Mol Physiol 281: L807–L815, 2001.
Timothy SH, Martin PK, Ning Li, and Andre EN. Chemicals in diesel exhaust particle generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol. 163: 5582-5591, 1999.
Wang H, and Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 27: 612-6, 1999.
Wilson MR, Lightbody JH, Donaldson K, Sales J, and Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184: 172– 179, 2002.
Zhang Q, Kusaka Y, Sato K, Nakakuki N, Kohyama N, and Donaldson K. Differences in the extent of inflammation caused by intracheal exposure to three ultrafine metals: Role of free radicals. J Toxicol Environ Health A 53: 423–438, 1998.
Zielinski H, Mudway IS, Berube KA, Murphy S, Richards R, and Kelly FJ. Modeling the interactions of particulates with epithelial lining fluid antioxidants. Am J Physiol. 277: L719-26, 1999.
李佳偉。人類呼吸道上皮細胞體外暴露空氣懸浮微粒和臭氧後產生細胞激素之影響。台灣大學職業醫學與工業衛生研究所碩士論文,2000。
高玫鐘。燃燒拜香產生反應性含氧物種之探討。台灣大學環境衛生研究所碩士論文,2001
陳衍政。大氣懸浮微粒之毒性研究:微粒粒徑與成分對於A-549細胞株釋放細胞激素之影響。台灣大學職業醫學與工業衛生研究所碩士論文,1999。
陳雅雯。碳60化合物保護RAW264.7細胞及失血再灌流的游離肺所遭受之氧化性傷害。台灣大學生理所碩士論文,2002。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔