(3.236.118.225) 您好!臺灣時間:2021/05/16 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李昌翰
研究生(外文):Chang-Han Lee
論文名稱:台灣地區揮發性有機污染物之時空分佈及健康風險評估
論文名稱(外文):The Temporal-Spatial Distribution and Health Risk Assessmentof Volatile Organic Compounds in Taiwan
指導教授:詹長權詹長權引用關係
指導教授(外文):Chang-Chuan Chan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:103
中文關鍵詞:光化學監測站揮發性有機污染物健康風險評估癌症
外文關鍵詞:Photochemical Assessment Monitoring Stations(PAMs)Volatile Organic Compounds(VOCs)BenzeneCancerHealth Risk Assessment
相關次數:
  • 被引用被引用:3
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
目的:VOCs不僅扮演著臭氧前驅物的重要角色,另外VOCs吸入所造成人類健康效應上的影響已經是無庸置疑的,本研究為探討台灣地區空氣中VOCs於不同環境、時間上的變化,以及評估一般民眾因暴露VOCs所導致的急性、慢性、以及終生致癌的健康風險。
方法:利用台灣地區共7座光化學測站(Photochemical Assessment monitoring Stations, PAMS),收集2003.1.1-2003.12.31或2003.3.1-2004.2.29時段內逐時的監測資料,經QA/QC後,利用SAS 8.02統計軟體進行資料處理及分析,並繪製不同地區VOCs之時間變化圖,以便進行準確的暴露評估。利用Hazard Index Approach的原則,以急性健康風險危害指數(HIA)、慢性健康風險危害指數(HIC)、以及終生致癌風險作為指標,進行一般居民吸入途徑之健康風險評估。
結果:污染物月份變化的情形隨著不同的地區也有所不同,然而在24小時變化中卻可以發現於早晨6點至9點之間,以及下午5點過後濃度升高的趨勢,並且於下午1點至3間出現濃度最低值的現象;另外就整體來看,南部鳳山地區其TVOCs之的平均值最高,達76.28ppb,北部土城地區次之,達61.73ppb,而中部竹山地區最低,為27.64ppb;但致癌物Benzen濃度在土城地區最高,橋頭次之,平均值分別為5.16、4.42ppb,草屯則為苯濃度最低的地區,為0.84ppb。因此土城地區致癌風險最高、草屯最低,分別為36.3×10-6至478.8×10-6、5.7×10-6至78×10-6;至於急性健康風險,以土城最高,HIA為0.008,遠小於1,因此不被預期有急性健康效應發生;慢性風險,仍以土城最高,HIC為0.49,仍小於1,故慢性健康效應的影響也不大。而在PAMs周圍半徑5Km內所居住的人口,以北部萬華最高,約115萬人,而南投竹山地區最少,僅約7萬人。
結論:不同地區之VOCs 24小時濃度變化皆成雙峰狀態,其原因可能為交通污染源及逆溫層強度所導致。整體而言,南投草屯、竹山污染物濃度較北部、南部低,因此不論是急性、慢性、或是致癌風險皆為最低的區域,雖然急性與慢性的危害指數皆小於1,意味著急性與慢性的健康效應不被預期發生在這樣的暴露情況下。但在某些區域,苯所導致的終生致癌風險仍然偏高,如土城、橋頭等地,若與其潛在暴露人口數一起考慮,則建議以北部及南部地區作為風險管理時的優先考量。
Objective:The purpose of this study is to estimate acute, chronic and carcinogenic health risks of Volatile Organic Compounds (VOCs) in Taiwan.
Methods:Hourly concentrations of 55 VOCs were measured in 7 Photochemical Assessment monitoring Stations (PAMs) in Taiwan between January 2003 and February 2004. VOC data were summarized to 1-hour maximum to estimate acute risks (HIA), and yearly averages to estimate chronic (HIC) and carcinogenic risks (Cancer Risk). Benchmark risk estimates of carcinogenic and noncarcinogenic effects for VOCs were taken from the California Environmental Protection Agency (Cal-EPA) and the United States Environmental Protection Agency (USEPA) to calculate HIA, HIC, and Cancer Risk.
Results:
Daily VOC variation showed two peaks concentrations in 6 to 9 AM and 5 to 11 PM. Annual averages showed total VOC concentrations were the highest in Fongshan (76.28 ppb), followed by Tucheng (61.73 ppb), Chunglun (55.21 ppb), Shuangyuan (54.79 ppb), Ciaotou (40.15 ppb), Cauton (34.17 ppb), and Jhushan (27.64 ppb). However, annual benzene concentrations were the highest in Tucheng (5.16 ppb), followed by Ciaotou (4.42 ppb), Shuangyuan (1.82 ppb), Fongshan (1.44 ppb), Chunglun (1.17 ppb), Jhushan (0.87 ppb), Cauton (0.84 ppb). Among the 55 VOCs, there were 5 VOCs with acute reference exposure levels (RELa), 8 VOCs with chronic reference exposure levels (RELC), and only benzene was classified as Class 1 human carcinogens by the International Agency for Research on Cancer (IARC). We found that all HIA were all far less than 1 with the highest one in Tucheng (HIA=0.008). We also fount that all HIC were less than 1 with the highest one in Tucheng (HIC=0.49). Cancer risks due to benzene ranged from 5.7×10-6 to 478.8×10-6. The highest one was in Tucheng, which was36.3×10-6 to 478.8×10-6.
Conclusions:The diurnal pattern of VOCs in our data confirmed that traffic-related emissions were main sources of VOCs in Taiwan. Our findings also indicated that residents surrounding these monitoring stations might have excess cancer risks due to benzene exposures but no significant noncancer risks due to acute or chronic exposures to VOCs.
總目錄
摘要 i
Abstract iii
第一章 前言 1
1.1 Criteria Air Pollutants 1
1.2 Hazardous Air Pollutants 2
1.3 研究緣起 3
1.4 研究目的 4
第二章 文獻回顧 5
2.1 揮發性有機污染物之健康危害 5
2.2 揮發性有機污染物之健康風險評估 10
第三章 材料與方法 13
3.1 研究流程 14
3.2 研究材料 15
3.2.1 Perkin Elmer光化測站簡介 15
3.2.2 AMA光化測站簡介 19
3.2.3 AMA、Perkin Elmer測站資料收集、處理 23
3.3 研究方法 27
3.3.1 VOCs描述性統計及時間變化 27
3.3.2 VOCs健康風險評估 27
3.3.3 NOx、CO、與致癌物Benzene的關係 31
第四章 結果 32
4.1 台灣各地區VOCs濃度時間變化及其健康風險 32
4.1.1 雙園測站 32
4.1.2 海山測站 38
4.1.3 崇倫測站 44
4.1.4 草屯測站 50
4.1.5 竹山測站 56
4.1.6 橋頭測站 62
4.1.7 鳳山測站 68
4.2 各測站結果比較 74
4.2.1 各地區污染物濃度的比較 74
4.2.2 各地區健康風險的比較 76
4.3 各地區所受影響之範圍 81
4.4 NOx、CO、致癌物Benzene趨勢及濃度關係 86
第五章 討論 90
5.1 VOCs日變化原因 90
5.2 各地污染物濃度及健康風險之差異 90
5.3 致癌風險與其他研究結果之比較 91
5.4 研究假設及限制 94
5.5 缺失值之處理 95
5.6 結論與建議 95
第六章 參考文獻 100
1.David D.B. 1991. Air Toxics: The Problem. EPA Journal 17: 2-30
2.Clean Air Act Amendment of 1990. Title I-Air Pollution Prevention and Control. Part A- Air Quality and Emission Limitation. Sec.112.
3.詹長權等,『台灣地區光化學污染之形成、傳輸機制、及其影響』, 行政院環保署, EPA-92-FA11-03-A059, 2003.
4.U.S. Department of Health and Human Service. Hazard Substances Data Bank (HSDB). National Toxicology Information Program, National Library of Medicine, Bethesda, MD.1993.
5.Sitting M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens. 2nd ed. Noyes Publications, Park Ridge, NJ.
6.Calabrese E.J. and Kenyon E.M. Air Toxics and Risk Assessment. Lewis Publishers, Chelsea, MI.
7.U.S. Department of Health and Human Service. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Benzene (Draft). U.S. Public Health Services, Atlanta, GA.1997.
8.U.S. Environmental Protection Agency. Integrated Risk Information System (ISIS) on Benzene. National Center for Environmental Assessment, Office of Research and Development, Washington, DC, 2002.
9.Rothman N., Li G.L., Dosemeci M., Bechtold W.E., 1996.Hematotoxicityc among Chinese worker heavily exposed benzene. American Journal of Industrial Medicine 29: 236-426.
10.U.S. Department of Health and Human Service. Registry of Toxic Effects of Chemical Substances (RTECS) National Toxicology Information Program, National Library of Medicine, Bethesda, MD. 1993

11.Reese E., Kimbrough R.D. 1993. Acute toxicity of gasoline and some additives. Environmental Health Perspectives. 101(S6): 115-131.
12.Chan C.C., Lin S.H., Her G.R. 1993. Student’s Exposure to Volatile Organic Compounds While Commuting by Motorcycle and Bus in Taipei City. Air & Waste 43: 1231-1238.
13.Cheng L., Fu L., Angle R.P., Sandhu H.S. 1996. Seasonal Variation of Volatile Organic Compounds in Edmonton, Alberta. Atmospheric Environment 31: 239-246.
14.Singh H.B., Zimmerman P.B. 1992. Atmospheric distribution and sources of nonmethane hydrocarbons. Gaseous Pollutants Characterization and Cycling: 177-225.
15.River Road Environmental Technology Center. 1991. Measurement program for toxic contaminants in Canadian urban air. Update and summary report. PMD 91-2. Environment Canada.
16.Radian Corp. 1989 Urban Air Toxics Monitoring Program. EPA-450/4-91-001. U.S. Environmental Protection Agency. Research Triangle Park, NC.1990.
17.Guo H., Lee S.C., Chan L.Y., Li W.M. 2003. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research 94: 57-66.
18.Chan C.C., Lin S.H., Her G.R. 1994. Office worker''s exposure to volatile organic compounds while commuting and working in Taipei city. Atmospheric Environment 28: 2351-2359.
19.Chan C.C., Spengler J.D., Ozkaynak H., Lefkopoulou M. 1992. Commuter exposure to VOC in Boston. Massachusettes. Journal Air and Waste Management Association41: 1594-1600.

20.SCAQMD 1989. “In-vehicle Air Toxics Characterization Study in the South Coast Air Basin: Final Report” South Air Quality Management District (SCAQMD), EI Monte.
21.Chan C.C., Ozkaynak H., Spengler J.D., Sheldon L. 1991. Driven exposure to VOC, CO, ozone and NO2 under different driving conditions. Environmental Science and Technology 25: 964-972.
22.Bevan M.A.J., Protor C.J., Baker-Roger J., Warren N.D., 1991. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle. Environmental Science and Technology 25: 964-972.
23.Helse D.R., 1990. Less than obvious ;statistical treatment of data below the detection limit. Environment Science & Technology 24: 1766-1774.
24.National Academy of Sciences. 1983. Risk Assessment in the Federal Government: Managing the Process. National Research Council. National Academy Press, Washington DC.
25.詹長權等,『研擬健康風險評估準則』, 行政院衛生署, 91038, 2003.
26.Office of Environment Health Hazard Assessment. Air Toxicity “Hot Spots” Risk Assessment Guideline Part1: Technical Support Document for the Determination of Acute Reference Exposure Level for Airborne Toxicants, Cal/EPA.1999.
27.Office of Environment Health Hazard Assessment. Air Toxicity “Hot Spots” Risk Assessment Guideline Part3: Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels for Airborne Toxicants. Office of Environmental Health Hazard Assessment, Cal/EPA.2000.

28.Office of Environment Health Hazard Assessment. Air Toxicity “Hot Spots” Risk Assessment Guideline Part2: Technical Support Document for Describing Available Cancer Potency Factors. Office of Environment Health Hazard Assessment, Cal/EPA.1999
29.謝瑞豪. 以開放式霍氏紅外線光譜儀重建工業區毒性物質之時空分佈. 台灣大學職業醫學與工業衛生研究所碩士論文,2000.
30.詹長權等,『以管制燃料油品質降低都會區大氣中苯濃度之監測計畫』, 行政院環保署, EPA-82-E4F1-08-23, 1993.
31.粘秋桂. 汽油汽機車尾氣排放特性及都會區污染源之判定. 台灣大學公共衛生研究所碩士論文,1993.
32.靳易安. 石化工業對高屏地區空氣品質的影響. 台灣大學公共衛生研究所碩士論文,1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊