(3.238.96.184) 您好!臺灣時間:2021/05/10 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃振哲
研究生(外文):Chen-Che Huang
論文名稱:胎兒時期分泌之類固醇賀爾蒙對小鼠腎上腺及下視丘腦垂腺腎上腺軸生長發育的影響
論文名稱(外文):Development of Hypothalamic-Pituitary-Adrenal Axis and Adrenal Requires Fetal Steroids Synthesis
指導教授:鍾邦柱郭應誠
指導教授(外文):Bon-Chu ChungIng-Cherng Guo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:52
中文關鍵詞:腎上腺基因剔除下視丘類固醇賀爾蒙腦垂腺
外文關鍵詞:HPA axisCyp11a1corticosteronefetal developmentadrenalP450scc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
During pregnancy, fetal corticosterone is derived both from that transferred from mother and that secreted from their own adrenal. The P450scc (Cyp11a1) enzyme, which catalyzes the first step of steroidogenesis, contributes to de novo synthesis of steroid hormones. Thus, the corticosterone in Cyp11a1 null embryos all comes from their mother through placenta, and this provides an animal model to study the disorder due to the lack of de novo synthesis of steroid hormones. The normal level of plasma corticosterone in the Cyp11a1 null mice indicates the transplacental corticosterone provides enough corticosterone level in fetal circulation. Even so, the developmental disorders were still detected. The null mice had enlarged and randomly distributed oil droplets in the adrenal at 16.5 dpc and the structure of adrenal was altered in parallel with random distribution of proliferating cells. The medulla migration was normal in the Cyp11a1 null mice, but this null adrenal could not synthesize epinephrine. In HPA axis of null mice, pituitary POMC had higher expression than the wildtype, which was consistent with the higher ACTH level in the plasma. Our results suggest that: (1) Inability of the fetal steroid synthesis during pregnancy affects adrenal organization. (2) The development of adrenal medulla required de novo corticosterone, which synthesize from vicinal cortex. (3) The de novo synthesis of steroid hormone is essential for normal development of the negative feedback function in HPA axis.
Table of Content

Abstract in Chinese 1
Abstract 2

Introduction
I. Steroid hormones
Classes & Functions 3
Steroidogenesis 3

II. Adrenal
Gross Anatomy 4
Cortical Zonation 4
Zonal specific markers in cortex 5
Medulla 5
Development of the embryonic mouse adrenal 6

III. Corticosterone & Stress
Stress response systems 6
Sympatho-adrenomedullary systems 6
HPA axis 7
Negative feedback in HPA axis 7
Non-glucocorticoids inhibitors involved in the negative feedback 8

IV. Corticosterone & Adrenal Function
Adrenalmedullary function and corticosterone 8
Cortical steroidogenic ability and corticosterone 9
V. Maternal corticosterone & Fetal Development
Transplacental corticosterone 9
Corticosterone and fetal development 10

VI. Models of Steroids Deficiency
Congenital adrenal hyperplasia 11
Cyp21 deficient mouse 11
Models of lipoid CAH 11
Other steroids deficiency models 12

VII. Aims & Motivation 13

Materials and Methods
The generation of Cyp11a1 KO mice 14
The genotyping of Cyp11a1 KO mice 14
Wax embedding 14
Hematoxylin and eosin staining 14
Proliferating cell nuclear antigen (PCNA) staining 15
Oil Red O staining 15
TUNEL assay 15
Immunohistochemistry 16
Hormone assays 16
Real-Time PCR 16
Epinephrine measurement 17
Chromaffin reaction 17

Results
Lack of daily rhythm of corticosterone in Cyp11a1 null fetus 18
Activated HPA axis in Cyp11a1 null fetus 18

Lower HSD11b expression in Cyp11a1 null mice brain 19
Disorganized embryonic adrenal of Cyp11a1 null mice 19
Lipid accumulation in null adrenal 20
Increased apoptosis and impaired cell proliferation in Cyp11a1 null mice 20
Lack of adrenergic chromaffin cells in Cyp11a1 null mice 20
Less catecholamine synthesis in Cyp11a1 null medulla 21

Discussions
Maternal and fetal corticosterone secretion 22
Lack of de novo synthesized corticosterone 22
Steroid secretion defect leads to disorganized adrenal 23
Medulla function and corticosterone from vicinal cortex 23
Neurosteroids and negative feedback 24
11beta-HSD-1 involved in glucocorticoid action 25
Negative feedback in Cyp11a1 null mice 26

Future Experiments 27
References 28
Tables 35
Figures 37
Bale, T.L., Contarino, A., Smith, G.W., Chan, R., Gold, L.H., Sawchenko, P.E., Koob, G.F., Vale, W.W. and Lee, K.F. (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet, 24, 410-414.
Ballard, P.L. (1989) Hormonal control of lung maturation. Baillieres Clin Endocrinol Metab, 3, 723-753.
Baulieu, E.E. (1997) Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res, 52, 1-32.
Bland, M.L., Fowkes, R.C. and Ingraham, H.A. (2004) Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function. Mol Endocrinol, 18, 941-952.
Bland, M.L., Jamieson, C.A., Akana, S.F., Bornstein, S.R., Eisenhofer, G., Dallman, M.F. and Ingraham, H.A. (2000) Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc Natl Acad Sci U S A, 97, 14488-14493.
Bornstein, S.R., Tajima, T., Eisenhofer, G., Haidan, A. and Aguilera, G. (1999) Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice. Faseb J, 13, 1185-1194.
Burkitt, H.G., Young, B. and Heath, J.W. (1993) The endocrine gland. In Wheater''s functional histology. Longman Asia, Newcastle.
Calogero, A.E., Raiti, F., Nicolosi, G., Burrello, N., D''Agata, R. and Mantero, F. (1994) Effects of endothelin-1 and endothelin-3 on rat hypothalamic corticotrophin-releasing hormone and pituitary ACTH release in vitro. J Endocrinol, 140, 419-424.
Caron, K.M., Soo, S.C., Wetsel, W.C., Stocco, D.M., Clark, B.J. and Parker, K.L. (1997) Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S A, 94, 11540-11545.
Cole, T.J., Blendy, J.A., Monaghan, A.P., Krieglstein, K., Schmid, W., Aguzzi, A., Fantuzzi, G., Hummler, E., Unsicker, K. and Schutz, G. (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev, 9, 1608-1621.
Evinger, M.J., Towle, A.C., Park, D.H., Lee, P. and Joh, T.H. (1992) Glucocorticoids stimulate transcription of the rat phenylethanolamine N-methyltransferase (PNMT) gene in vivo and in vitro. Cell Mol Neurobiol, 12, 193-215.
Falkenstein, E., Tillmann, H.C., Christ, M., Feuring, M. and Wehling, M. (2000) Multiple actions of steroid hormones--a focus on rapid, nongenomic effects. Pharmacol Rev, 52, 513-556.
Feldman, S. and Weidenfeld, J. (1995) Neural mechanisms involved in the corticosteroid feedback effects on the hypothalamo-pituitary-adrenocortical axis. Prog Neurobiol, 45, 129-141.
Fride, E., Dan, Y., Feldon, J., Halevy, G. and Weinstock, M. (1986) Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiol Behav, 37, 681-687.
Fujieda, K., Okuhara, K., Abe, S., Tajima, T., Mukai, T. and Nakae, J. (2003) Molecular pathogenesis of lipoid adrenal hyperplasia and adrenal hypoplasia congenita. J Steroid Biochem Mol Biol, 85, 483-489.
Gasior, M., Carter, R.B. and Witkin, J.M. (1999) Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci, 20, 107-112.
Gotoh, H., Sagai, T., Hata, J., Shiroishi, T. and Moriwaki, K. (1988) Steroid 21-hydroxylase deficiency in mice. Endocrinology, 123, 1923-1927.
Grossman, A., Costa, A., Forsling, M.L., Jacobs, R., Kostoglou-Athanassiou, I., Nappi, G., Navarra, P. and Satta, M.A. (1997) Gaseous neurotransmitters in the hypothalamus. The roles of nitric oxide and carbon monoxide in neuroendocrinology. Horm Metab Res, 29, 477-482.
Halder, S.K., Takemori, H., Hatano, O., Nonaka, Y., Wada, A. and Okamoto, M. (1998) Cloning of a membrane-spanning protein with epidermal growth factor-like repeat motifs from adrenal glomerulosa cells. Endocrinology, 139, 3316-3328.
Harris, H.J., Kotelevtsev, Y., Mullins, J.J., Seckl, J.R. and Holmes, M.C. (2001) Intracellular regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase (11beta-HSD)-1 plays a key role in regulation of the hypothalamic-pituitary-adrenal axis: analysis of 11beta-HSD-1-deficient mice. Endocrinology, 142, 114-120.
Hasegawa, T., Zhao, L., Caron, K.M., Majdic, G., Suzuki, T., Shizawa, S., Sasano, H. and Parker, K.L. (2000) Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol, 14, 1462-1471.
Heiman, M.L., Ahima, R.S., Craft, L.S., Schoner, B., Stephens, T.W. and Flier, J.S. (1997) Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology, 138, 3859-3863.
Henry, C., Kabbaj, M., Simon, H., Le Moal, M. and Maccari, S. (1994) Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol, 6, 341-345.
Herrenkohl, L.R. (1979) Prenatal stress reduces fertility and fecundity in female offspring. Science, 206, 1097-1099.
Ho, M.M. and Vinson, G.P. (1993) 11 beta-Hydroxylase gene expression in the rat adrenal cortex. J Endocrinol, 139, 301-306.
Hu, M.C., Chou, S.J., Huang, Y.Y., Hsu, N.C., Li, H. and Chung, B.C. (1999) Tissue-specific, hormonal, and developmental regulation of SCC-LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology, 140, 5609-5618.
Hu, M.C., Hsu, N.C., El Hadj, N.B., Pai, C.I., Chu, H.P., Wang, C.K. and Chung, B.C. (2002) Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol Endocrinol, 16, 1943-1950.
Ibanez-Santos, J., Tsagarakis, S., Rees, L.H., Besser, G.M. and Grossman, A. (1990) Atrial natriuretic peptides inhibit the release of corticotrophin-releasing factor-41 from the rat hypothalamus in vitro. J Endocrinol, 126, 223-228.
Kalu, D.N. (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner, 15, 175-191.
Katsumata, N., Ohtake, M., Hojo, T., Ogawa, E., Hara, T., Sato, N. and Tanaka, T. (2002) Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab, 87, 3808-3813.
Keegan, C.E. and Hammer, G.D. (2002) Recent insights into organogenesis of the adrenal cortex. Trends Endocrinol Metab, 13, 200-208.
Keim, S.R. and Shekhar, A. (1996) The effects of GABAA receptor blockade in the dorsomedial hypothalamic nucleus on corticotrophin (ACTH) and corticosterone secretion in male rats. Brain Res, 739, 46-51.
Kotelevtsev, Y., Brown, R.W., Fleming, S., Kenyon, C., Edwards, C.R., Seckl, J.R. and Mullins, J.J. (1999) Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2. J Clin Invest, 103, 683-689.
Krude, H. and Gruters, A. (2000) Implications of proopiomelanocortin (POMC) mutations in humans: the POMC deficiency syndrome. Trends Endocrinol Metab, 11, 15-22.
Kvetnansky, R., Pacak, K., Fukuhara, K., Viskupic, E., Hiremagalur, B., Nankova, B., Goldstein, D.S., Sabban, E.L. and Kopin, I.J. (1995) Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann N Y Acad Sci, 771, 131-158.
Lambert, J.J., Belelli, D., Hill-Venning, C. and Peters, J.A. (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci, 16, 295-303.
Larsen, P.J., Jessop, D., Patel, H., Lightman, S.L. and Chowdrey, H.S. (1993) Substance P inhibits the release of anterior pituitary adrenocorticotrophin via a central mechanism involving corticotrophin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus. J Neuroendocrinol, 5, 99-105.
Leret, M.L., Peinado, V., Gonzalez, J.C., Suarez, L.M. and Rua, C. (2004) Maternal adrenalectomy affects development of adrenal medulla. Life Sci, 74, 1861-1867.
Lin, D., Sugawara, T., Strauss, J.F., 3rd, Clark, B.J., Stocco, D.M., Saenger, P., Rogol, A. and Miller, W.L. (1995) Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science, 267, 1828-1831.
Luo, X., Ikeda, Y. and Parker, K.L. (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell, 77, 481-490.
Ma, X.M. and Aguilera, G. (1999) Differential regulation of corticotropin-releasing hormone and vasopressin transcription by glucocorticoids. Endocrinology, 140, 5642-5650.
Ma, X.M., Levy, A. and Lightman, S.L. (1997) Rapid changes of heteronuclear RNA for arginine vasopressin but not for corticotropin releasing hormone in response to acute corticosterone administration. J Neuroendocrinol, 9, 723-728.
Magiakou, M.A., Mastorakos, G., Rabin, D., Margioris, A.N., Dubbert, B., Calogero, A.E., Tsigos, C., Munson, P.J. and Chrousos, G.P. (1996) The maternal hypothalamic-pituitary-adrenal axis in the third trimester of human pregnancy. Clin Endocrinol (Oxf), 44, 419-428.
Majumdar, A.P. and Nielsen, H. (1985) Influence of glucocorticoids on prenatal development of the gut and pancreas in rats. Scand J Gastroenterol, 20, 65-71.
Makino, S., Smith, M.A. and Gold, P.W. (1995) Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology, 136, 3299-3309.
Matthews, S.G. (2002) Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol Metab, 13, 373-380.
Montano, M.M., Wang, M.H., Even, M.D. and vom Saal, F.S. (1991) Serum corticosterone in fetal mice: sex differences, circadian changes, and effect of maternal stress. Physiol Behav, 50, 323-329.
Mulay, S. and Solomon, S. (1992) Adrenal Cortical Function During Pregnancy. In James, V.T. (ed.), The Adrenal Gland. Raven Press, New York.
New, M.I. (1998) Diagnosis and management of congenital adrenal hyperplasia. Annu Rev Med, 49, 311-328.
Noble, R.E. (2002) Diagnosis of stress. Metabolism, 51, 37-39.
Ogishima, T., Suzuki, H., Hata, J., Mitani, F. and Ishimura, Y. (1992) Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011 beta in rat adrenal cortex: histochemical basis for the functional zonation. Endocrinology, 130, 2971-2977.
Pang, S., Yang, X., Wang, M., Tissot, R., Nino, M., Manaligod, J., Bullock, L.P. and Mason, J.I. (1992) Inherited congenital adrenal hyperplasia in the rabbit: absent cholesterol side-chain cleavage cytochrome P450 gene expression. Endocrinology, 131, 181-186.
Purdy, R.H., Morrow, A.L., Moore, P.H., Jr. and Paul, S.M. (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A, 88, 4553-4557.
Redei, E., Rittenhouse, P.A., Revskoy, S., McGivern, R.F. and Aird, F. (1998) A novel endogenous corticotropin release inhibiting factor. Ann N Y Acad Sci, 840, 456-469.
Reichardt, H.M., Kaestner, K.H., Tuckermann, J., Kretz, O., Wessely, O., Bock, R., Gass, P., Schmid, W., Herrlich, P., Angel, P. and Schutz, G. (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell, 93, 531-541.
Samson, W.K., Murphy, T. and Schell, D.A. (1995) A novel vasoactive peptide, adrenomedullin, inhibits pituitary adrenocorticotropin release. Endocrinology, 136, 2349-2352.
Schumacher, M., Akwa, Y., Guennoun, R., Robert, F., Labombarda, F., Desarnaud, F., Robel, P., De Nicola, A.F. and Baulieu, E.E. (2000) Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J Neurocytol, 29, 307-326.
Seckl, J.R. and Walker, B.R. (2001) Minireview: 11beta-hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocorticoid action. Endocrinology, 142, 1371-1376.
Shiroishi, T., Sagai, T., Natsuume-Sakai, S. and Moriwaki, K. (1987) Lethal deletion of the complement component C4 and steroid 21-hydroxylase genes in the mouse H-2 class III region, caused by meiotic recombination. Proc Natl Acad Sci U S A, 84, 2819-2823.
Simpson, E.R. and Waterman, M.R. (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol, 50, 427-440.
Tajima, T., Fujieda, K., Kouda, N., Nakae, J. and Miller, W.L. (2001) Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab, 86, 3820-3825.
Tajima, T., Ma, X.M., Bornstein, S.R. and Aguilera, G. (1999) Prenatal dexamethasone treatment does not prevent alterations of the hypothalamic pituitary adrenal axis in steroid 21-hydroxylase deficient mice. Endocrinology, 140, 3354-3362.
Tan, T.T., Yang, Z., Huang, W. and Lim, A.T. (1994) ANF(1-28) is a potent suppressor of pro-opiomelanocortin (POMC) mRNA but a weak inhibitor of beta EP-LI release from AtT-20 cells. J Endocrinol, 143, R1-4.
Tanaka, S. and Matsuzawa, A. (1995) Comparison of adrenocortical zonation in C57BL/6J and DDD mice. Exp Anim, 44, 285-291.
Taylor, A.D., Cowell, A.M., Flower, J. and Buckingham, J.C. (1993) Lipocortin 1 mediates an early inhibitory action of glucocorticoids on the secretion of ACTH by the rat anterior pituitary gland in vitro. Neuroendocrinology, 58, 430-439.
Torpy, D.J., Grice, J.E., Hockings, G.I., Walters, M.M., Crosbie, G.V. and Jackson, R.V. (1997) Diurnal effects of fluoxetine and naloxone on the human hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol, 24, 421-423.
Tsagarakis, S., Rees, L.H., Besser, M. and Grossman, A. (1990) Opiate receptor subtype regulation of CRF-41 release from rat hypothalamus in vitro. Neuroendocrinology, 51, 599-605.
Unsicker, K. (1993) The chromaffin cell: paradigm in cell, developmental and growth factor biology. J Anat, 183 ( Pt 2), 207-221.
Vallee, M., MacCari, S., Dellu, F., Simon, H., Le Moal, M. and Mayo, W. (1999) Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci, 11, 2906-2916.
Vallee, M., Rivera, J.D., Koob, G.F., Purdy, R.H. and Fitzgerald, R.L. (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem, 287, 153-166.
Venihaki, M., Carrigan, A., Dikkes, P. and Majzoub, J.A. (2000) Circadian rise in maternal glucocorticoid prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc Natl Acad Sci U S A, 97, 7336-7341.
Venihaki, M. and Majzoub, J. (2002) Lessons from CRH knockout mice. Neuropeptides, 36, 96-102.
Villa, M., Menard, D., Semenza, G. and Mantei, N. (1992) The expression of lactase enzymatic activity and mRNA in human fetal jejunum. Effect of organ culture and of treatment with hydrocortisone. FEBS Lett, 301, 202-206.
Vinson, G.P. (2003) Adrenocortical zonation and ACTH. Microsc Res Tech, 61, 227-239.
Vinson, G.P. and Hinson, J.P. (1992) Blood flow and hormone secretion in the adrenal gland. In James, V.T. (ed.), The Adrenal Gland. Raven Press, New York.
Waseem, N.H. and Lane, D.P. (1990) Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. J Cell Sci, 96 ( Pt 1), 121-129.
Welberg, L.A. and Seckl, J.R. (2001) Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol, 13, 113-128.
White, P.C., Mune, T. and Agarwal, A.K. (1997) 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev, 18, 135-156.
Windle, R.J., Shanks, N., Lightman, S.L. and Ingram, C.D. (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829-2834.
Wong, D.L., Hayashi, R.J. and Ciaranello, R.D. (1985) Regulation of biogenic amine methyltransferases by glucocorticoids via S-adenosylmethionine and its metabolizing enzymes, methionine adenosyltransferase and S-adenosylhomocysteine hydrolase. Brain Res, 330, 209-216.
Wong, D.L., Lesage, A., Siddall, B. and Funder, J.W. (1992) Glucocorticoid regulation of phenylethanolamine N-methyltransferase in vivo. Faseb J, 6, 3310-3315.
Wotus, C., Levay-Young, B.K., Rogers, L.M., Gomez-Sanchez, C.E. and Engeland, W.C. (1998) Development of adrenal zonation in fetal rats defined by expression of aldosterone synthase and 11beta-hydroxylase. Endocrinology, 139, 4397-4403.
Wurtman, R.J. (1966) Control of epinephrine synthesis in the adrenal medulla by the adrenal cortex: hormonal specificity and dose-response characteristics. Endocrinology, 79, 608-614.
Wurtman, R.J. and Axelrod, J. (1965) Adrenaline synthesis: control by the pituitary gland and adrenal glucocorticoids. Science, 150, 1464-1465.
Yoshida-Hiroi, M., Bradbury, M.J., Eisenhofer, G., Hiroi, N., Vale, W.W., Novotny, G.E., Hartwig, H.G., Scherbaum, W.A. and Bornstein, S.R. (2002) Chromaffin cell function and structure is impaired in corticotropin-releasing hormone receptor type 1-null mice. Mol Psychiatry, 7, 967-974.
Young, J.B. (2002) Programming of sympathoadrenal function. Trends Endocrinol Metab, 13, 381-385.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔