(3.236.122.9) 您好!臺灣時間:2021/05/09 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾華明
研究生(外文):Hua-Ming Tseng
論文名稱:第一部份:藉場放大樣品堆積技術以提高黃連生物鹼毛細管電泳檢測之靈敏度第二部分:藉掃集技術以提高黃連生物鹼毛細管電泳檢測之靈敏度
論文名稱(外文):Part I: Sensitivity improvement on detection of Coptidis alkaloids by field-amplified sample stacking in capillary electrophoresisPart II: Sensitivity improvement on detection of Coptidis alkaloids by sweeping in capillary electrophoresis
指導教授:孫紹文
指導教授(外文):Shao-Wen Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:99
中文關鍵詞:黃連生物鹼黃連生物鹼.膠束電動層析法毛細管區帶電泳. 第二部份:掃集法第一部份:場放大樣品堆積法
外文關鍵詞:micellar electrokinetic chromatographyCoptidis Rhizoma alkaloids.Coptidis Rhizoma alkaloids. Part II: sweepingCapillary zone electrophoresisPart I: Field-amplified sample stacking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部份:藉場放大樣品堆積技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

本研究的目的在於應用場放大樣品堆積技術(FASS)發展出一可大幅提高黃連生物鹼檢測靈敏度之分析方法。所使用之電泳液組成為400 mM Tris (pH 8.6)/15% (v/v) MeOH,樣品溶於水中,分離電壓為25 kV。電動進樣注射電壓8 kV,注射時間12秒;水壓進樣注射壓力150 mbar,注射時間24秒。兩種不同的注射模式於最適化操作下皆可於15 分鐘內達基線分離的解析度。
本研究中所開發之水壓進樣模式相較於傳統進樣模式其偵測靈敏度約獲得17倍之提昇;而電動進樣模式甚至可獲得約260倍之提昇,其檢測最低極限已達ppb (ng/ml)等級。

第二部份:藉掃集技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

常見於改善毛細管檢測靈敏度的線上濃縮技術包括有電場放大樣品堆積法及掃集法等。本研究嘗試應用近年來發展出之掃集法以開發一快速、簡便、且可大幅提高檢測靈敏度之線上濃縮技術用於分離黃連植物中主要之生物鹼。
本研究發現在下列條件:背景電解質100 mM H3PO4 / 15 mM SDS / 10 % THF,pH 1.82,分離電壓 –25 kV,樣品注射壓力1000 mbar,注射時間60秒下,黃連生物鹼分析物可於15 分鐘內達到基線分離。
本研究所發展之分析法其分析物之檢測最低限為2.5 ppb (ng/ml),相較於傳統進樣模式,其檢測靈敏度約有500倍之提昇。由本研究的結果顯示,掃集法可用於黃連藥用生物鹼之微量檢定與分析。
Part I:Sensitivity improvement on detection of Coptidis alkaloids by field-amplified sample stacking in capillary electrophoresis

A head-column field-amplified sample stacking (FASS) for the on-line improvement of detection sensitivity of the main alkaloids of Coptidis Rhizoma has been developed in the work. Optimum separation conditions were found as follows: background solution comprising 400 mM Tris, pH 8.6, with the addition of 15% (v/v) MeOH, voltage 25 kV, hydrodynamic injection with 150 mbar and 24 s, electrokinetic injection with 8 kV and 12 s. Both injection modes attained baseline-separation within 15 min under optimum separation conditions. The detectabilities (limits of detection) of the alkaloids were lowered to about 260-fold for electrokinetic injection and 17-fold for hydrodynamic injection with respect to the conventional sample injection. The detectability for the electrokinetic injection was even in the parts per billion (ppb) levels.

Part II:Sensitivity improvement on detection of Coptidis alkaloids by sweeping in capillary electrophoresis

Examples of on-line approach to sample concentration include field-amplified sample stacking (FASS) and sweeping. After an FASS method for the on-line improvement of detection sensitivity of the Coptidis alkaloids had been developed in the previous study, we further attempted the sweeping technique to improve the detectability of the same alkaloids.
A simple and rapid sweeping method for the on-line improvement of detection sensitivity of the main alkaloids of Coptidis Rhizoma has been developed in the work. Optimum separation conditions were found as follows: background solution comprising 100 mM phosphoric acid, 15 mM SDS and 10% (v/v) THF with pH 1.82, voltage –25 kV, sample matrix composed of 50 mM phosphoric acid and sample injection at 1000 mbar for 60 sec. The three main protoberberine alkaloids of Coptidis Rhizoma were baseline-separated within 15 min. The detectabilities of the alkaloids were found to be 2.5 ng/ml (ppb), which was about five hundred times lower compared to the conventional sample injection method.
目錄
第一部份:藉場放大樣品堆積技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

壹、 緒論與研究目的 1
貳、 研究方法與步驟 3
2.1. 分析方法之建立 3
2.1.1. 場放大樣品堆積之電動注射模式 4
2.1.2. 場放大樣品堆積之水壓注射模式 4
2.1.3. 傳統注射模式 5
2.2. 檢品的配製 5
2.3. 檢品層析圖與標準層析圖之比較 5
2.4. 分析方法之確效 6
2.4.1. 精密度 6
2.4.2. 線性 6
2.4.3. 檢測極限 7
2.4.4. 準確度 7
2.5. 檢品的分析 8
參、實驗部分 9
3.1. 儀器 9
3.2. 藥品及試劑 9
3.3. 參考層析圖之工作溶液 10
3.4. 檢品溶液 10
3.5. 毛細管電泳系統 11
3.6. 毛細管之處理 12
肆、結果與討論 13
4.1. 樣品堆積法的原理簡介 13
4.2. 分析方法的發展 15
4.2.1. 緩衝溶液之選擇 15
4.2.2. 電泳模式 16
4.2.3. 施加的電壓 .16
4.3. 分析參數之探討 17
4.3.1. 場放大樣品堆積之電動注射模式 .17
4.3.1.1. 緩衝溶液之pH值 17
4.3.1.2. 緩衝溶液濃度 19
4.3.1.3. 樣品注射電壓 21
4.3.1.4. 樣品注射時間 22
4.3.2. 場放大樣品堆積之水壓注射模式 24
4.3.2.1. 樣品注射壓力 24
4.3.2.2. 樣品注射時間 25
4.4. 樣品間質 26
4.5. 分析方法的確效 30
4.5.1. 精密度 30
4.5.2. 線性 34
4.5.3. 最低檢測極限 .38
4.5.4. 準確度 39
4.6. 黃連檢品中主要藥用成分之定量 40
伍、結論 41
陸、參考文獻 43

第二部份: 藉掃集技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

壹、 緒論與研究目的 47
貳、 研究方法與步驟 49
2.1. 分析方法之建立 49
2.2. 檢品的配製 50
2.3. 檢品層析圖與標準層析圖之比較 50
2.4. 分析方法之確效 50
2.4.1. 精密度 50
2.4.2. 線性 51
2.4.3. 檢測極限 51
2.4.4. 準確度 52
2.5. 檢品的分析 52
參、實驗部分 53
3.1. 儀器 53
3.2. 藥品及試劑 54
3.3. 檢品溶液 54
3.4. 毛細管電泳系統 55
3.5. 毛細管之處理 55
肆、結果與討論 57
4.1. 毛細管電泳掃集法簡介 57
4.1.1. 電泳掃集法發展史 57
4.1.2. 掃集法之基本原理如下 60
4.1.3. 掃集法的漸序發展與應用 65
4.2. 分析方法的發展 67
4.2.1. 樣品間質濃度 67
4.2.2. 樣品注射之長度 69
4.2.3. 有機溶媒修飾劑之種類 71
4.2.4. 電滲流的存在效應 77
4.3. 無電滲流存在之掃集系統滯留順序之討論 80
4.4. 掃集系統分析方法的確效 84
4.4.1. 精密度 84
4.4.2. 線性 88
4.4.3. 最低檢測極限 92
4.4.4. 準確度 93
4.5. 黃連檢品中主要藥用成分之定量 94
伍、結論 96
陸、參考文獻 97


圖目錄

第一部份:藉場放大樣品堆積技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

Figure 1. Schematic diagram showing the field-amplified sample stacking process 14

Figure 2. Capillary electropherogram of the extract of a Coptidis Rhizoma sample 17

Figure 3. Effect of buffer pH on migration of the Coptidis Rhizoma alkaloids 19

Figure 4. Effect of buffer concentration on peak heights of berberine 20

Figure 5. Effect of sample injection voltage on the peak heights of the three alkaloids 22

Figure 6. Effect of sample injection time on peak heights of the three alkaloids 23

Figure 7. Effect of sample injection pressure on peak heights of three alkaloids 25

Figure 8. Effect of sample injection time on peak heights of the three alkaloids 26

Figure 9. Structures of the Coptidis alkaloids analyzed and N-benzylcinchonidinium chloride (internal standard) 28

Figure 10. Comparison of peak heights obtained from FASS/ electrokinetic injection, FASS/hydrodynamic injection, and conventional injection 29

Figure 11. Calibration curve of coptisine 36
Figure 12. Calibration curve of berberine 37

Figure 13. Calibration curve of palmatine 37


第二部份:藉掃集技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

Figure 1. Evolution of micelles and neutral analyte molecules during sweeping in the absence of electroosmotic flow 59

Figure 2. Evolution of micelles and positively charged analyte molecules during sweeping in the absence of electroosmotic flow 61

Figure 3. Evolution of micelles and positively charged analyte molecules during sweeping in the presence of high electroosmotic flow 63

Figure 4. Evolution of analyte zones in CSEI-sweep-MEKC 66

Figure 5. Effect of sample matrix concentration on peak height of Coptidis alkaloids 68

Figure 6. Effect of sample injection time on peak height and resolution of Coptidis alkaloids 70

Figure 7. Structures of the Coptidis alkaloids analyzed and ethidium bromide (internal standard) 72

Figure 8. Electropherogram of the extract of a Coptidis Rhizoma sample in the absence of organic modifier 73

Figure 9. Effect of MeOH concentration on resolution of Coptidis alkaloids 74

Figure 10. Effect of ACN concentration on resolution of Coptidis alkaloids 74

Figure 11. Effect of isopropanol concentration on resolution of Coptidis alkaloids 76

Figure 12. Effect of THF concentration on resolution of Coptidis alkaloids 76

Figure 13. Electropherogram of the extract of a Coptidis Rhizoma sample in the presence of high electroosmotic flow 78

Figure 14. Effect of sample injection pressures on peak height and resolution of a Coptidis Rhizoma sample in the presence of high electroosmotic flow 79

Figure 15. Electropherogram of the extract of a Coptidis Rhizoma sample 81

Figure 16. Capillary electropherograms of the three main Coptidis alkaloids with (A): 0.1ppm (μg/ml), (B): 1ppm (μg/ml) concentration 83

Figure 17. Calibration curve of coptisine 90

Figure 18. Calibration curve of berberine 91

Figure 19. Calibration curve of palmatine 91

Figure 20. Electropherogram of the extract of a Coptidis Rhizoma sample and internal standard 94


表目錄
第一部份:藉場放大樣品堆積技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

Table 1. Comparison of peak heights obtained from FASS/electrokinetic injection, FASS/hydrodynamic injection, and conventional injection 29

Table 2. Migration times of the Coptidis alkaloids 32

Table 3. Repeatability and reproducibility of the migration times for the Coptidis alkaloids 32

Table 4. Peak height ratios for the Coptidis alkaloids 33

Table 5. Repeatability and reproducibility of the peak height ratios for the Coptidis alkaloids 33

Table 6. Data used for the calculation of the calibration curve of coptisine 35

Table 7. Data used for the calculation of the calibration curve of berberine 35

Table 8. Data used for the calculation of the calibration curve of palmatine 36

Table 9. Linear relationships between peak height ratios (y) and concentrations (ng/ml) (x) for the Coptidis alkaloids 38

Table 10. Comparison of limit of detection (LOD) obtained from FASS/electrokinetic injection and conventional injection 38

Table 11. Recoveries of the Coptidis alkaloids 39

Table 12. Contents of main Coptidis alkaloids 40

第二部份:藉掃集技術以提高黃連生物鹼毛細管電泳檢測之靈敏度

Table 1. Migration times for the Coptidis alkaloids 85

Table 2. Repeatability and reproducibility of the migration times for the Coptidis alkaloids 86

Table 3. Peak height ratios for the Coptidis alkaloids 87

Table 4. Repeatability and reproducibility of the peak height ratios for the Coptidis alkaloids 88

Table 5. Data used for the calculation of the calibration curve of coptisine 89

Table 6. Data used for the calculation of the calibration curve of berberine 89

Table 7. Data used for the calculation of the calibration curve of palmatine 90

Table 8. Linear relationships between peak height ratios (y) and concentrations (ng/ml) (x) for the Coptidis alkaloids 92

Table 9. Comparison of limit of detection (LOD) obtained from sweeping system and conventional injection 92

Table 10. The recoveries of the Coptidis alkaloids 93

Table 11. Contents of main Coptidis alkaloids 95
第一部份:

1.W. Tang and G. Eisenbrand, Chinese drugs of plant origin, Springer-Verlag, Berlin Heidelberg, 1992, p. 361.

2.M. D. Wang, High performance liquid chromatographic analysis of commonly used Chinese herbal medicines, Science publishing, Beijing, 1999, p. 315.

3.R. L. Chien and D. S. Burgi, Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis, Anal. Chem., 64, 1046-1050 (1992).

4.C. X. Zhang and W. Thormann, Head-column field-amplified sample stacking in binary system capillary electrophoresis: a robust approach providing over 1000-fold sensitivity enhancement, Anal. Chem., 68, 2523-2532 (1996).

5.G. Hempel, Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids, Electrophoresis, 21, 691-698 (2000).

6.N. E. Baryla and C. A. Lucy, pH-independent large-volume sample stacking of positive or negative analytes in capillary electrophoresis, Electrophoresis, 22, 52-58 (2001).

7.C. X. Zhang and W. Thormann, Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2. optimization with a preinjection plug and application to micellar electrokinetic chromatography, Anal. Chem., 70, 540-548 (1998).

8.S. Liu, Q. Li, X. Chen and Z. Hu, Field-amplified sample stacking in capillary electrophoresis for on-column concentration of alkaloids in Sophora flavescens Ait., Electrophoresis, 23, 3392-3397 (2002).

9.J. P. Quirino, J. B. Kim and S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis, J. Chromatogr. A, 965, 357-373 (2002).
10.J. P. Quirino and S. Terabe, sample stacking of fast-moving anions in capillary zone electrophoresis with pH-suppressed electroosmotic flow, J. Chromatogr. A, 850, 339-344 (1999).

11.D. Martínez, F. Borrull and M. Calull, Strategies for determining environmental pollutants at trace levels in aqueous samples by capillary electrophoresis, Trends Anal. Chem., 18, 282-291 (1999).

12.Y. M. Liu and S. J. Sheu, Determination of quaternary alkaloids from Coptidis Rhizoma by capillary electrophoresis, J. Chromatogr., 623, 196-199 (1992).

13.CX Zhang, Y. Aebi and W. Thorman, Microassay of amiodarone and desethylamiodarone in serum by capillary electrophoresis with head-column field-amplified sample stacking, Clin. Chem., 42, 1805-1811 (1996).

14.R. B. Taylor, A.S. Low and R.G. Reid, Determination of opiates in urine by capillary electrophoresis, J. Chromatogr. B, 675, 213-223 (1996).

15.A. B. Wey, CX. Zhang and W. Thorman, Head-column field-amplified sample stacking in binary system capillary electrophoresis: Preparation of extracts for determination of opioids in microliter amounts of body fluids, J. Chromatogr. A, 853, 95-106 (1999).

16.S. Pálmarsdóttir and L. E. Edholm, Enhancement of selectivity and concentration sensitivity in capillary zone electrophoresis by on-line coupling with column liquid chromatography and utilizing a double stacking procedure allowing for microliter injections, J. Chromatogr. A, 693, 131-143 (1995).

17.S. Pálmarsdóttir, L. Mathiasson, J. A. Jöensson and L. E. Edholm, Determination of a basic drug, bambuterol, in human plasma by capillary electrophoresis using double stacking for large volume injection and supported liquid membranes for sample pretreatment , J. Chromatogr. B, 688, 127-134 (1997).

18.J. P. Quirino and S. Terabe, Large volume sample stacking of positively chargeable analytes in capillary zone electrophoresis without polarity switching: Use of low reversed electroosmotic flow induced by a cationic surfactant at acidic pH, Electrophoresis, 21, 355-359 (2000).

19.D. S. Burgi and R. L. Chien, Optimization in sample stacking for high-performance capillary electrophoresis, Anal. Chem., 63, 2042-2047 (1991).

20.D. S. Burgi and R. L. Chien, Field amplified sample injection in high-performance capillary electrophoresis, J. Chromatogr., 559, 141-152 (1991).

21.R. L. Chien, Mathematical modeling of field-amplified sample injection in high-performance capillary electrophoresis, Anal. Chem., 63, 2866-2869 (1991).

22.L. Zhu, C. Tu and H. K. Lee, Liquid-phase microextraction of phenolic compounds combined with on-line preconcentration by field-amplified sample injection at low pH in micellar electrokinetic chromatography, Anal. Chem., 73, 5655-5660 (2001).

23.Z. K. Shihabi, Stacking in capillary zone electrophoresis, J. Chromatogr. A, 902, 107-117 (2000).

24.J. P. Quirino and S. Terabe, Sample stacking of cationic and anionic analytes in capillary electrophoresis, J. Chromatogr. A, 902, 119-135 (2000).

25.J. P. Quirino and S. Terabe, Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping, Anal. Chem., 72, 1023-1030 (2000).

26.L. Zhu, C. Tu and H. K. Lee, On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping- micellar electrokinetic chromatography, Anal. Chem., 74, 5820-5825 (2002).

27.R. M. McCormick, Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries, Anal. Chem., 60, 2322-2328 (1988).

28.J. W. Jorgenson and K. D. Lukacs, High resolution separation based on electrophoresis and electroosmosis, J. Chromatogr., 218, 209-216 (1981).

29.J. W. Jorgenson and K. D. Lukacs, Zone electrophoresis in open tubular glass capillaries , Anal. Chem., 53, 1298-1302 (1981).

30.M. Unger and J. Stöckigt, Improved detection of alkaloids in crude extracts applying capillary electrophoresis with field amplified sample injection, J. Chromatogr. A, 791, 323-331 (1997).

31.D. S. Burgi and R. L. Chien, Improvement in the method of sample stacking for gravity injection in capillary zone electrophoresis, Anal. Biochem., 202, 306-309 (1992).

32.R. L. Chien and J. C. Helmer, Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis, Anal. Chem., 63, 1354-1361 (1991).

33.D. N. Heiger, High performance capillary electrophoresis-an introduction, Hewlett-Packard Company, 1992, p. 83.

第二部份:

1.R. L. Chien and D. S. Burgi, Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis, Anal. Chem., 64, 1046-1050 (1992).
2.C. X. Zhang and W. Thormann, Head-column field-amplified sample stacking in binary system capillary electrophoresis: a robust approach providing over 1000-fold sensitivity enhancement, Anal. Chem., 68, 2523-2532 (1996).
3.G. Hempel, Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids, Electrophoresis, 21, 691-698 (2000).
4.N. E. Baryla and C. A. Lucy, pH-independent large-volume sample stacking of positive or negative analytes in capillary electrophoresis, Electrophoresis, 22, 52-58 (2001).
5.C. X. Zhang and W. Thormann, Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2. optimization with a preinjection plug and application to micellar electrokinetic chromatography, Anal. Chem., 70, 540-548 (1998).
6.S. Liu, Q. Li, X. Chen and Z. Hu, Field-amplified sample stacking in capillary electrophoresis for on-column concentration of alkaloids in Sophora flavescens Ait., Electrophoresis, 23, 3392-3397 (2002).
7.M. J. Markuszewski, B. M. Philip, S. Terabe, K. Matsuda and T. Nishioka, Determination of pyridine and adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis, J. Chromatogr. A, 989, 293-301 (2003).
8.J. P. Quirino and S. Terabe, Sample stacking of fast-moving anions in capillary zone electrophoresis with pH-suppressed electroosmotic flow, J. Chromatogr. A, 850, 339-344 (1999).
9.D. Martínez, F. Borrull and M. Calull, Strategies for determining environmental pollutants at trace levels in aqueous samples by capillary electrophoresis, Trends Anal. Chem., 18, 282-291 (1999).
10.R. L. Chien, Mathematical modeling of field-amplified sample injection in high-performance capillary electrophoresis, Anal. Chem., 63, 2866-2869 (1991).
11.J. P. Quirino and S. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography, Science, 282, 465-468 (1998).
12.Y. M. Liu and S. J. Sheu, Determination of quaternary alkaloids from Coptidis Rhizoma by capillary electrophoresis, J. Chromatogr., 623, 196-199 (1992).
13.R. L. Chien and D. S. Burgi, Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis, Anal. Chem., 64, 1046-1050 (1992).
14.J. P. Quirino and S. Terabe, Sweeping of analyte zone in electrokinetic chromatography, Anal. Chem., 71, 1638-1644 (1999).
15.J. P. Quirino, K. Otsuka and S. Terabe, Separation and on-line preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles, J. Chromatogr. A, 939, 99-108 (2001).
16.J. F. Palmer, High-salt stacking principles and sweeping: comments and contrasts on mechanisms for high-sensitivity analysis in capillary electrophoresis, J. Chromatogr. A, 1036, 95-100 (2004).
17.J. P. Quirino, J. B. Kim and S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis, J. Chromatogr. A, 965, 357-373 (2002).
18.R. B. Taylor, R. G. Reid and A. S. Low, Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography, J. Chromatogr. A, 916, 201-206 (2001).
19.J. P. Quirino, K. Otsuka and S. Terabe, Determination of environmentally relevant aromatic amines in the ppt levels by cation selective exhaustive injection-sweeping-micellar electrokinetic chromatography, Electrophoresis, 21, 2899-2903 (2000).
20.O. Núñez, J. B. Kim, E. Moyano, M. T. Galceran and S. Terabe, Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection, J. Chromatogr. A, 961, 65-75 (2002).
21.J. P. Quirino and S. Terabe, Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping, Anal. Chem., 72, 1023-1030 (2000).
22.Z. Liu, H. Zou and Y. Zhang, Roles of organic modifiers in micellar electrokinetic capillary chromatography, J. High Resol. Chromatogr., 21, 234-240 (1998).
23.N. Chen, S. Terabe and T. Nakagawa, A quantitative study on the effect of organic modifier in micellar electrokinetic chromatography, Electrophoresis, 16, 1457-1462 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 液相微萃取結合毛細管電泳進行防腐劑之分析與線上濃縮結合毛細管電泳對三聚氰胺衍生物的偵測
2. 毛細管電泳之方法開發與應用:利用線上樣品濃縮技術偵測對苯二甲酸產品中之不純物與毛細管電泳結合質譜儀分析盤尼西林
3. 線上濃縮技術在非水相毛細管電泳與毛細管電泳/表面增強拉曼法上的應用
4. 1.毛細管電泳法對八種抗憂鬱藥物之同時分析與應用2.電場加強樣品堆積之毛細管電泳法對血漿中Amitriptyline及Nortriptyline之分析研究
5. Ⅰ.利用毛細管電泳法對支氣管擴張劑藥物theophylline和dyphylline之同時分析研究Ⅱ.電場加強樣品堆積之毛細管電泳法對血漿中zotepine及norzotepine之分析研究
6. 一:以毛細管電泳法分離fenoterol,formoterol與labetalol之對掌異構物:fenoterol異構物分離方法耐用性試驗之研究.二:Chlorpheniramine對掌異構物毛細管電泳分離之最適化:dexchlorpheniramine純度之測定
7. 第一部分:開發毛細管電泳方法同時分析人體血漿中Triazole 類抗黴菌藥物濃度第二部分:開發超高效液相層析結合串聯式質譜儀方法定量柴胡與生物樣品中柴胡皂苷A、柴胡皂苷B2和柴胡皂苷D之濃度
8. 香豆素在毛細管電泳與毛細管液相層析之分離機制探討
9. 利用毛細管電泳線上濃縮技術分析古柯鹼、大麻及其相關代謝物
10. 鄰苯二甲酸酯於非水毛細管電泳法及毛細管液相層析法之探討
11. Ⅰ.利用毛細管電泳法對支氣管擴張劑藥物theophylline和dyphylline之同時分析研究Ⅱ.電場加強樣品堆積之毛細管電泳法對血漿中zotepine及norzotepine之分析研究
12. 1.毛細管電泳對人體血漿中非固醇性抗發炎藥indomethacin之分析研究2.毛細管電泳對cefepime與l-arginine之同時分析研究
13. 毛細管氣相層析及毛細管電泳用衍生試劑對trans,trans-muconicacid、碘化物及胺基藥物之分析應用
14. 1.毛細管電泳對人體血漿中非固醇性抗發炎藥indomethacin之分析研究2.毛細管電泳對cefepime與l-arginine之同時分析研究
15. 利用溶膠-凝膠法製作毛細管柱及其在毛細管電層析之應用研究
 
系統版面圖檔 系統版面圖檔