(18.204.227.34) 您好!臺灣時間:2021/05/19 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李若屏
研究生(外文):Jo-Ping Lee
論文名稱:頸部多裂肌於頭部抗靜態後移阻力過程之肌肉形態變化-超音波影像量測
論文名稱(外文):Cervical Multifidus Architecture During Head Retraction Manoeuvre-an Ultrasonographic Study
指導教授:王淑芬王淑芬引用關係
指導教授(外文):Shwu-Fen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:130
中文關鍵詞:頭部抗後移阻力超音波肌肉形態頸部多裂肌
外文關鍵詞:muscle architecturecervical multifidusultrasonographyhead retraction against resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:頸部背側深層肌肉多裂肌具有獨特之感覺與動作功能;然而多節頸部多裂肌肌肉形態變化模式仍不清楚,而該模式可反應肌肉組成和肌肉動作變化。且以具非侵入性、可紀錄即時影像等特性之超音波影像來量測頸部多裂肌之效度及用力時之量測信度亦尚未獲證實。目的:(1)前驅實驗為探討超音波量測頸部多裂肌之效度及用力時之量測信度及(2)主要實驗透過超音波影像紀錄頸椎第四至第六節頸部多裂肌於頭部抗靜態後移阻力用力及放鬆過程中不同用力程度時的肌肉形態。方法:前驅實驗以核磁共振影像和超音波影像頸椎第四至第六節頸部多裂肌之肌肉面積、厚度和寬度;並以平均差值和線性回歸分析比較兩種影像之量測結果;並於同一天由同一施測者以超音波重複量測頸部多裂肌於靜態和頭部抗最大靜態後移阻力時肌肉厚度,以量測變異量之CVw和CVb檢定其信度。主要實驗共徵召20名無頸部疼痛症狀之受試者(平均年齡24.3±4.7歲,5名女性和15名男性),以10MHz線型探頭擷取超音波影像,同步紀錄頸椎第四至第六節頸部多裂肌於頭部抗靜態後移阻力用力及放鬆過程中的肌肉形態與阻力之連續變化;以3x5重覆量測變異數分析和多重分析比較不同節頸椎和阻力之間差異。結果:前驅實驗顯示肌肉厚度於核磁共振和超音波影像之平均差值為±0.20公分,並為中等程度相關(R2範圍為0.42~0.64);且於用力及放鬆下CVw均小於10%。主要實驗則顯示肌肉厚度變化量與阻力呈曲-線性關係,且二次多項式為較佳預測曲線 (y=ax2+bx+c);用力過程中肌肉厚度變化量於50%之頭部抗最大靜態後移阻力內有明顯變化,而比較三節頸部多裂肌間之肌肉厚度變化量並無明顯差異,僅第六節頸部多裂肌於放鬆過程中呈現較慢放鬆。結論:本研究建立以超音波影像量測頸部多裂肌連續且動態之厚度變化為具效度和信度。結果支持頸部多裂肌主要功能為維持頸椎椎體穩定度;而非參與產生力量 (force production)。
關鍵字:超音波、頸部多裂肌、肌肉形態、頭部抗後移阻力
Study Design. An in-vivo study of muscle architecture of cervical multifidus at C4, C5 and C6 levels during head retraction manoeuvre using ultrasonography.
Objectives. The pilot study is to investigate the validity and reliability of measurement for cervical multifidus using ultrasonography. The main study is to investigate cervical multifidus muscle function by the change pattern of multifidus thickness, and to compare the changes in muscle thickness among different resistance levels (rest, 25%, 50%, 75% and 100%) and different cervical levels (C4, C5 and C6).
Summary of Background. Cervical multifidus has specific sensory and motion function. However, it was unclear about muscle architectural change of cervical multifidus during head retraction manoeuvre with progressive resistance. The validity and reliability of measuring cervical multifidus using ultrasonography hasn’t been proven.
Methods. In the pilot study, thickness, width and area of multifidus were measured at C4, C5 and C6 were measured using MRI and ultrasonography. The limit of agreement and the regression analysis were used to compare the results of two modalities. Besides, muscle thickness was repeatedly measured during the static and head retraction manoeuvre using ultrasonography by the same rater on the same day; the CVw and CVb were used to investigate reliability. In the main study, multifidus architecture measured in twenty asymptomatic subjects (24.3±4.7 yo, 5 women and 15 men) during head retraction manoeuvre with progressive resistance and during relaxation using ultrasonography apparatus with 10MHz linear transducer. ANOVA with repeated measurement and post-hoc analysis were to investigate the difference among different cervical levels and resistance force levels.
Results. The pilot study showed that the limit of agreement was ±0.20 cm and the moderate level of correlation (R2 ranged in 0.42~0.64) for muscle thickness measured between MRI and ultrasonography. For muscle thickness, the CVw values under static and under head retraction against maximum resistance were lower than 10%. In the main study, there was a curvilinear relationship between muscle thickness change and resistance, and the quadratic equations were the proper curves for estimation. There was significant difference of muscle thickness change within 50% of maximum retraction against resistance; and there was no significant difference among three cervical levels. It was suggested that muscle at C6 relaxed more slowly during the period from the beginning of relaxation.
Conclusion. The present study built a valid and reliable method for measuring continuous and dynamic changes of muscle thickness using ultrasonography. The results supported muscle function of cervical multifidus for segmental stability but not for force production.

Key words: ultrasonography, cervical multifidus, muscle architecture, head retraction against resistance
Table of Contents


Table of Contents…………………………………………………………………….iii
List of Tables…………………………………………………………………..……..v
List of Figures………………………………………………………………..……....vi
List of Appendix………………………………………………………………….....vii

Abstract………………………………………………………………………………1
中文摘要…………………………………………………………………….....1
Abstract…………………………………………………….…………………...3
Background…………………………………………………………………………..5
Purpose of Study……………………………………………………………………..8
Terminology………………………………………………………………………….9
Hypothesis…………………………………………………………………………...10
Literature Review……………………………………………………………………11
The importance of cervical dorsal deep muscles…………………………....….11
1.1 Anatomic structure………………………………………….…………11
1.2 Physiology…………………………………………………………….12
1.3 Sensory function……………………………………………………....13
1.4 Motion function…………………………………………………….…14
1.5 Clinical changes…………………………………………………….…20
1.5.1 Muscle fiber……………………………………………………21
1.5.2 Muscle architecture….…………………………………………21
1.5.3 Muscle strength………………………………………………...21
1.5.4 Configuration and segmental motion……………………….….22
1.5.5 Sensory function-propioception…………………………….….23
1.5.6 The effect of training and exercise…………….…………….…23

The methods of measuring muscle architecture.………………..………………25
2.1 The relationship of muscle architecture and muscle function……..…..25
2.2 Magnetic resonance image (MRI)……….………..…………..……….26
2.3 Ultrasonography…………………………………………………..…...27
2.4 The validity and reliability of measuring muscle using the imaging
systems………………………………………...………………………28
2.5 The methods to measure muscle activity……………..……………….29


Contents of Study


The Pilot Study……..………………………………………………………….…..32
Ultrasonography of Cervical Multifidus-Comparison with Magnetic Resonance Image and Test-retest Reliability
Introduction…………………………………………………………………..32
Methods and Materials……………………………………………………….35
Results………………………………………………………………………..43
Discussion…………………………………………………………………….46
Conclusion……………………………………………………………………52

The Main Study……………………………………….……………………..……..53
Cervical Multifidus Contraction Pattern During Head Retraction Manoeuvre in Asymptomatic Young Adults Using Ultrasonography
Introduction……………………………………………………………….…..53
Methods and Materials………………………………………………………..58
Results…………………………………………………………………….…..65
Discussion……………………………………………………………………,.73
Conclusion………………………………………………………………….…78


Summary………………………………………………………………………….....79

Reference List…………………………………………………………………….....80



List of Tables


Table 1-1 The measurement data of cervical multifidus using ultrasonography and MRI…………………………………………………………………..………T-1
Table 1-2 Reliability of intra-rater inter-session under the conditions of rest and maximum retraction against resistance…………………..…..…………………………..T-2


Table 2-1 Muscle thickness and force of cervical multifidus under rest and maximum retraction against resistance……………………………………………...…...T-3
Table 2-2 Kappa analysis for the consistence of muscle contraction pattern…………....T-4
Table 2-3 Kappa analysis for the consistence of muscle relaxation pattern…………......T-5
Table 2-4 Reliability for measurement muscle thickness under different force levels during contraction………………………..………………………………………..…T-6
Table 2-5 Reliability for measurement muscle thickness under different force levels during relaxation…………………………………………………………………..…T-7
Table 2-6 The values of coefficients in the best fitted quadratic equations…...………...T-8
Table 2-7 The change in muscle thickness under different force levels during contraction…..…………………………………………………………….....T-9
Table 2-8 The change in muscle thickness under different force levels during relaxation…………………...……………………………………………......T-10
Table 2-9 The rate of change in muscle thickness under different force levels during contraction……..……………………………………………………..……...T-11
Table 2-10 The rate of change in muscle thickness under different force levels during relaxation………..…….………………………………..………………..…..T-12




List of Figures


Fig. I-1 HDI 5000 ultrasound apparatus……………………………………………...F-1
Fig. I-2 Designed head support…………………………………………………….…F-2
Fig. I-3 A balance board with a inclinometer………………………………………...F-3
Fig. I-4 The placement of the transducer and custom-designed device for the transducer during prone position…….………………………………………..………... F-4
Fig. I-5 The muscle image under ultrasonographic image…………………………...F-5
Fig. I-6 The muscle image under the MRI image…………………….………….…...F-6
Fig. I-7 A designed examining chair with force transducer…………………………..F-7
Fig. I-8 Instruments and experimental arrangement….…………………………..…..F-8
Fig. I-9 The placement of the transducer during sitting…………………………...….F-9
Fig. I-10 The definition of measurement for Cervical multifidus using the MRI image………………………………………………………………….……F-10
Fig. I-11 The definition of measurement for Cervical multifidus using ultrasonography………………………………………………………….…F-11
Fig. I-12 Experimental arrangement……….…………………………………………F-12


Fig. 1-1 Regression analysis for cervical multifidus thickness at C4-C6 levels….....F-13
Fig. 1-2 Regression analysis for cervical multifidus width at C4-C6 levels………...F-14
Fig. 1-3 Regression analysis for cervical multifidus area at C4-C6 levels……..…....F-15


Fig. 2-1 Contraction pattern of the change in muscle thickness of cervical multifidus at C4, C5 and C6 levels…………….………………………………..……………...F-16
Fig. 2-2 Relaxation pattern of the change in muscle thickness of cervical multifidus at C4, C5 and C6 levels……………………………………………..……………....F-17
Fig. 2-3 Rate of change in muscle thickness of cervical multifidus at C4, C5 and C6 levels during contraction………………………….……………..……………...…..F-18
Fig. 2-4 Rate of change in muscle thickness of cervical multifidus at C4, C5 and C6 levels during relaxation……………………………………………………….....….F-19


List of Appendix


Consent for subjects…………………………………………………………........A-1
Questionnaire for subject’s base data…………………………………………..…A-3
Reference List

1. Cote P, Cassidy JD, Carroll L. The factors associated with neck pain and its related disability in the Saskatchewan population. Spine 2000;25:1109-17.
2. Bovim G, Schrader H, Sand T. Neck pain in the general population. Spine 1994;19:1307-9.
3. Sjogaard G, Lundberg U, Kadefors R. The role of muscle activity and mental load in the development of pain and degenerative processes at the muscle cell level during computer work. Eur J Appl Physiol 2000;83:99-105.
4. Kristjansson E, Jonsson H, Jr. Is the sagittal configuration of the cervical spine changed in women with chronic whiplash syndrome? A comparative computer-assisted radiographic assessment. J Manipulative Physiol Ther 2002;25:550-5.
5. Kristjansson E, Leivseth G, Brinckmann P, Frobin W. Increased sagittal plane segmental motion in the lower cervical spine in women with chronic whiplash-associated disorders, grades I-II: a case-control study using a new measurement protocol. Spine 2003;28:2215-21.
6. Kristjansson E. Reliability of ultrasonography for the cervical multifidus muscle in asymptomatic and symptomatic subjects. Man Ther 2004;9:83-8.
7. Mannion AF. Fibre type characteristics and function of the human paraspinal muscles: normal values and changes in association with low back pain. J Electromyogr Kinesiol 1999;9:363-77.
8. Uhlig Y, Weber BR, Grob D, Muntener M. Fiber composition and fiber transformations in neck muscles of patients with dysfunction of the cervical spine. J Orthop Res 1995;13:240-9.
9. Boyd-Clark LC, Briggs Ca, Galea MP. Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine 2002;27:694-701.
10. Mayoux-Benhamou MA, Revel M, Vallee C. Selective electromyography of dorsal neck muscles in humans. Exp Brain Res 1997;113:353-60.
11. Panjabi MM, Crisco JJ, Vasavada A. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine 2001;26:2692-700.
12. Boyd-Clark LC, Briggs CA, Galea MP. Comparative histochemical composition of muscle fibres in a pre- and a postvertebral muscle of the cervical spine. J Anat 2001;199:709-16.
13. Conley MS, Meyer RA. Noninvasive analysis of human neck muscle function. Spine 1995;20:2505-12.
14. Hides JA, Stokes IA, Saide M, Jull GA, Cooper DH. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 1994;19:165-72.
15. Hayashi Naoto, Masumoto T, Abe O, Aoki S, Ohtomo K, Tajiri Y. Accuracy of abnormal paraspinal muscle findings on contrast- enhanced MR images as indirect signs of unilateral cervical root- avulsion injury. Radiol 2002;223:397-402.
16. Mayoux-Benhamou MA, Revel M, Vallee C. Surface electrodes are not appropriate to record selective myoelectric activity of splenius capitis muscle in humans. Exp Brain Res 1995;105:432-8.
17. Agar AM. Grant''s Altas of Anatomy. 9th ed. Williams & Wilkins: Baltimore. 1991.
18. Macintosh JE, Valencia F, Bogduk N. The morphology of the human lumbar multifidus. Clin Biomech 1986;1:196-204.
19. Moseley AM, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 2003;27:E29-E36.
20. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 1973;18:112-29.
21. Sirca A, Kostevc V. The fibre type composition of thoracic and lumbar paravertebral muscles in man. J Anat 1985;141:131-7.
22. Amonoo-Kuofi HS. The number and distribution of muscle spindles in human intrinsic postvertebral muscles. J Anat 1982;135:585-99.
23. Hunt CC. Mammalian muscle spindle: peripheral mechanisms. Physiol Rev 1990;70:643-59.
24. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 3rd ed. Elsevier Science Publishing Co., Inc.: New York. 1991.
25. Takebe K, Vitti M, Basmajian JV. The functions of semispinalis capitis and splenius capitis muscles: an electomyographic study. Anat Rec 1973;179:477-80.
26. Vitti M, Fujiwara M, Basmajian JV, Iida M. The integrated roles of longus colli and sternocleidomastoid muscles: an electromyographic study. Anat Rec 1973;177:471-84.
27. Falla D, Jull G, Hodges PW. Feedforward activity of the cervical flexor muscles during voluntary arm movements is delayed in chronic neck pain. Exp Brain Res 2004.
28. Kumar S, Narayan Y, Amell T, Ferrari R. electromyography of superficial cervical muscles with exertion in the sagittal, coronal and oblique planes. Eur Spine J 2002;11:27-37.
29. Vasavada AN, Li S, Delp SL. Influence of muscle morphometry and moment arms on the moment- generating capacity of human neck muscles. Spine 1998;23:412-22.
30. Panjabi M, Abumi K, Duranceau J, Oxland T. Spinal stability and intersegmental muscle forces. A biomechanical model. Spine 1989;14:194-9.
31. Hodges PW, Richardson C. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res 1997;114:362-70.
32. Moseley GL, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 2002;27:E29-E36.
33. Donisch EW, Basmajian JV. Electromyography of deep back muscles in man. Am J Anat 1971;133:25-36.
34. Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci 1984;67:7-14.
35. Stocks IA, Gardner-Morse M. Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J Biomech 1995;28:173-86.
36. Kaigle AM, Holm SH, Hansson TH. Experimental instability in the lumbar spine. Spine 1995;4:421-30.
37. Morrissey MC. Reflex inhibition of thigh muscles in knee injury. Causes and treatment. Sports Med 1989;7:263-76.
38. Fryer G, Morris T, Gibbons P. Paraspinal muscles and intervertebral dysfunction: part two. J Manipulative Physiol Ther 2004;27:348-57.
39. Campbell WW, Vasconcelos O, Laine FJ. Focal atrophy of the multifidus muscle in lumbaosacral radiculopathy. Muscle Nerve 1998;21:1350-3.
40. Kennelly KP, Stokes MJ. Pattern of asymmetry of paraspinal muscle size in adolescent idiopathic scoliosis examined by real-time ultrasound imaging. Spine 1993;18:913-7.
41. Fryer G, Morris T, Gibbons P. Paraspinal muscles and intervertebral dysfunction: part two. J Manipulative Physiol Ther 2004;27:348-57.
42. Guyton AC, Hall JE. Human physiology and mechanisms of disease. 2nd ed. W.B. Sauders Company: Philadelphia. 1997.
43. Bjelle A, Hagberg M, Michaelson G. Work-related shoulder-neck complaints in industry: A pilot study. Br J Rheumtol 1987;26:365-9.
44. Ylinen J, Takala E, Nykanen M. Active neck muscle training in the treatment of chronic neck pain in women. J Am Med Assoc 2003;289:2509-16.
45. Ylinen J, Ruska J. Clinical use of neck isometric strength measurement in rehabilitation. Arch Phys Med Rehabil 1994;75:465-9.
46. Heikkila H, Astron P. Cervicocephalic kinesthetic sensitivity in patients with whiplash injury. Scand J Rehabil Med 1996;28:133-8.
47. Revel M, Andre-Deshays C, Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil 1991;72:288-91.
48. 鄧金枝:退化性頸椎炎病人的頭部再定位測量.2000.台大醫學院圖書館.
49. Skinner HB, Barrack RL, Cook SD. Age-related decline in proprioception. Clin Orthop 1984;184:208-11.
50. Parkhurst TM, Burnett CN. Injury and proprioception in the low back pain. journal of sports physical therapy 1994;19:282-95.
51. 薛鴻基:退化性頸椎炎退化性頸椎炎患者之頸部力覺與拮抗肌活性. In: 台灣醫學. 台大醫學院圖書館 (In Press).
52. Mannion AF, Kaser L, Weber E, Rhyner A, Dvorak J, Muntener M. Influence of age and duration of symptoms on fibre type distribution and size of the back muscles in chronic low back pain patients. Eur Spine J 2000;9:273-81.
53. Danneels LA, Coorevits PL, Cools AM. Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub- acute and chronic low back pain. Eur Spine J 2002;11:13-9.
54. Danneels LA, Vanderstraeten GG, Cambier DC. Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med 2001;35:186-91.
55. Ploutz- Snyder LL, Yackel- Giamis EL, Rosenbaum AE, Formikell M. Use of muscle functional magnetic resonance imaging with older individuals. J Gerontology 2000;55A:B504-B511.
56. Tsuyma K, Yamamoto Y, Fujimoto H, Adachi T, Nakazato K, Nakajima H. Comparison of the isometric cervical extension strength and a cross-sectional area of neck extensor muscles in college wrestlers and judo athletes. Eur J Appl Physiol 2001;84:487-91.
57. Mayoux-Benhamou MA, Wybier M, Revel M. Strength and cross-sectional area of the dorsal neck muscles. Ergonomics 1989;32:513-8.
58. Young A, Stokes M, Crowe M. Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest 1984;14:282-7.
59. Conley MS, Stone MH, Nimmins M, Dudley GA. Specificity of resistance training reponses in neck muscle size and strength. Eur J Appl Physiol 1997;75:443-8.
60. Sipila S, Suominen H. Ultrasound imaging of the quadriceps muscle in elderly athletes and untrained men. Muscle Nerve 1991;14:527-33.
61. Cohn D, Benditt JO, Eveloff S, McCool FD. Diaphragm thickness during inspiration. J Appl Physiol 1997;83:291-6.
62. Wait JL, Nahormek PA, Yost WT, Rochester DP. Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol 1989;67:1560-8.
63. Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal muscle MRI images. Invest Radiol 1990;25:480-5.
64. Livingston BP, Segal RL, Song A, Hopkins K, English AW, Manning CC. Functional activation of the extensor carpi radialis muscles in humans. Arch Phys Med Rehabil 2001;82:1164-70.
65. Kremkau FW. Diagnostic Ultrasound: Principle, Instruments, and Exercise. W.B. Saunders Company: Philadelphia. 1989.
66. Henriksson-Larsen K, Wretling ML, Lorentzon R, Oberg L. Do muscle fibre size and fibre angulation correlate in pennation human muscles? Eur J Appl Physiol 1992;64:68-72.
67. Rutherford OM, Jones DA. Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol 1992;65:433-7.
68. Hides JA, Cooper DH, Stokes MJ. Diagnostic ultrasound imaging for measurement of the lumbar multifidus muscle in normal young adults. Physiother Theory Prac 1992;8:19-26.
69. Hides JA, Richardson CA, Jull GA. Magnetic resonance imaging and ultrasonogrpahy of the lumbar multifidus. Spine 1995;20:54-8.
70. Esformes R, Narici MV. Measurement of human muscle volume using ultrasonography. Eur J Appl Physiol 2002;87:90-2.
71. Richardson C, Panjabi M. Therapeutic Exercise for Spinal Segmental Stabilization in Low Back Pain. Churchill Livingstone: Philadelphia. 1999.
72. Soltani AR, Kallinen M, Malkia E, Vihko V. Ultrasonogrpahy of the neck splenius capitis muscle. Acta Radiolgica 1996;37:647-50.
73. Hodges PW, Pengel LHM, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 2003;27:682-92.
74. Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometirc contraction. J Physiol 1996;496:287-97.
75. McMeeken JM, Beith ID, Newham DJ, Milligan P, Critchley DJ. The relationship between EMG and change in thickness of transversus abdominis. Clin Biomech (Bristol., Avon.) 2004;19:337-42.
76. Cote P, Cassidy JD, Carroll L. The Saskatchewan Health and Back Pain Survey. The prevalence of neck pain and related disability in Saskatchewan adults. Spine 1998;23:1689-98.
77. Westbrook C, Kaut C. MRI in Practice. Oxford Blackwell Scientific Publications: London. 1993.
78. McDicken WN. Diagnostic ultrasounics-principles and use of instruments. Churchill Livingstone: New York. 1991.
79. Gerhardt P, Frommhold W. Altas of anatomic correlations in CT and MRI. Thieme Medical Publishers, Inc: New York. 1991.
80. Rainoldi A, Galardi G, Maderna L, Comi G, Lo CL, Merletti R. Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle. J Electromyogr Kinesiol 1999;9:105-19.
81. Rezasoltan A, Ylinen JJ, Vihko V. Isometric cervical extension force and dimensions of semispinalis capitis muscle. J Rehabil Res 2002;39:423-8.
82. Portney LG, Watkins MP. Foundations of clinical research applications of prctice. 2nd ed. Upper Saddle River: New Jersey. 2000.
83. Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine 1996;21:2640-50.
84. Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol., Avon.) 1996;11:1-15.
85. Cholewicki J, Panjabi MM, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 1997;22:2207-12.
86. Akataki K, Mita K, Watakabe M, Itoh K. Mechanomyogram and force relationship during voluntary isometric ramp contractions of the biceps brachii muscle. Eur J Appl Physiol 2001;84:19-25.
87. Akataki K, Mita K, Watakabe M, Itoh K. Mechanomyographic responses during voluntary ramp contractions of the human first dorsal interosseous muscle. Eur J Appl Physiol 2003;89:520-5.
88. McGill SM, Grenier S, Kavcic N, Cholewicki J. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol 2003;13:353-9.
89. Falla D, Jull G, Edwards S, Koh K, Rainoldi A. Neuromuscular efficiency of the sternocleidomastoid and anterior scalene muscles in patients with chronic neck pain. Disabil Rehabil 2004;26:712-7.
90. Nederhand MJ, Hermens HJ, IJzerman MJ, Turk DC, Zilvold G. Cervical muscle dysfunction in chronic whiplash-associated disorder grade 2: the relevance of the trauma. Spine 2002;27:1056-61.
91. Nederhand MJ, Hermens HJ, IJzerman MJ, Turk DC, Zilvold G. Chronic neck pain disability due to an acute whiplash injury. Pain 2003;102:63-71.
92. Barton PM, Hayes KC. Neck flexor muscle strength, efficiency, and relaxation times in normal subjects and subjects with unilateral neck pain and headache. Arch Phys Med Rehabil 1996;77:680-7.
93. Revel M, Minguet M, Gergoy P, Vaillant J, Manuet JL. Changes in cervicocephalic kinesthesia after a proprioceptive rehabilitation program in patients with neck pain: a randomized controlled study. Arch Phys Med Rehabil 1994;75:895-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top