(18.204.227.34) 您好!臺灣時間:2021/05/14 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐育志
研究生(外文):Yu-Chih Ou
論文名稱:不同負荷阻力對膝關節角度配對之影響
論文名稱(外文):A Study of Knee Joint Position Sense in Different Resistance Condition
指導教授:詹美華詹美華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:54
中文關鍵詞:本體感覺關節位置感負荷阻力膝關節
外文關鍵詞:ProprioceptionKnee repositionResistanceLoadingAbsolute Angle Error (AAE)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:本體感覺提供人體重要的感覺輸入,能判斷肢體在空間的位置與動作方向,並可維持關節動態與靜態身體的姿勢及穩定度,因此本體感覺的好壞會影響人的肢體動作。近年來許多學者都在研究如何評估本體感覺,就有學者認為在負荷阻力下關節主動-主動配對模式測量應較能測出接近日常生活中本體感覺的狀況。過去不同學者在測試時,給予的阻力皆不同,但從未有同一研究用不同負荷阻力探討對本體感覺的影響。本研究目的在探討不同負荷阻力下,關節位置感主動-主動角度配對絕對誤差值之差異。研究方法:以40位健康年輕人為對象,負荷阻力量設為體重之25%、50%、75%和100%;目標角度設為膝關節彎曲0°-30°與30°-60°兩種,受試者採坐姿坐於負荷阻力儀上,以隨機方式給與不同阻力與角度的測試。利用電子量角器量測受試者兩膝之主動-主動關節角度配對之絕對誤差值(absolute angle error, AAE)。以二因子變異數分析方法分析不同阻力與不同角度對角度配對絕對誤差值之差異,其顯著水準訂在p<0.05。結果:40名受試者,男女性各20名(男性:24.8±4.6歲;女性:24.8±3.5歲),結果顯示關節角度配對之絕對誤差值在不同負荷阻力間有顯著差異(F=11.829,P=0.001), 75%體重為負荷阻力的角度配對絕對誤差值最小,與以25%、100%體重為負荷阻力時的角度配對絕對誤差值間,各具有統計上顯著的差異(P75%-25%=0.0029;P75%-100%=0.0016)。另外兩不同目標角度0°-30°與30°-60°,其關節角度配對之絕對誤差值分別為1.1°±0.5°與1.3°±0.6°,也有顯著差異(P<0.001),膝關節屈曲在較小的目標角度可得到較小的關節角度配對之絕對誤差值。討論:隨著負荷阻力增加確實得到較小的角度配對絕對誤差值,此結果可能是負荷阻力的增加使源自膝關節周邊收縮與非收縮性軟組織內之本體感覺接受器傳入中樞更多本體感覺訊息。但以100%體重為負荷阻力時,卻可能因為負荷阻力過大影響到測試結果。0°-30°比30°-60°為目標角度可得到較小之角度配對絕對誤差值,其原因可能是膝關節螺旋歸位機制(screw home mechanism)的作用,造成關節囊與肌膜張力的增加,而導致傳入中樞的本體感覺訊息增加,因而使得角度配對絕對誤差值較小。另已被證實的原因是:小角度可激發較多關節附近的本體感覺接受器。結論:在受試者可輕鬆抗衡負荷阻力儀時,負荷阻力越大,關節角度配對絕對誤差值越小。膝關節屈曲30°以內比30°以上時,可得到較小的關節角度配對絕對誤差值。在未來量測膝關節空間位置感時,可將本研究測量參數列入臨床研究不同膝關節疾患及臨床評估操作的參考。
Background: “Proprioception” is generally referred as the perception of limb position in space. Poor proprioception may result in the inability of maintaining static and dynamic posture. Active-active knee reposition test under resistance condition simulates muscle activities in daily life and is suggested by researchers to be the most proper way to assess knee proprioception. Previous studies differed in their resistance conditions under which the active-active knee reposition tests were performed. However, no study has ever compared the influence of different resistance conditions and knee joint angles in assessing knee reposition. Thus, no consistent standardized protocol has yet been established for the assessment of knee proprioception. Purposes: The purpose of this study was to compare the difference of knee joint reposition test performed during closed kinetic chain in four resistance conditions and two target angles in healthy subjects. Methods: Forty-three healthy young adults participated in the study. Four resistances conditions (25%, 50%, 75%, and 100% of body weight) and two knee joint angles (0°-30°, 30°-60°flexion) were randomly assigned to the subjects. The absolute angle error (AAE) was calculated as the difference between each target and reposition angle measured by an electrogoniometer. Repeated two-way analysis of variance (two repeated factors, 4-resistance condition and 2-target knee angle) was performed to exam the main effect and interaction. A P value of 0.05 was considered significant. Results: Forty subjects, 20 men (24.8±4.6 years old) and 20 women (24.8±3.5 years old) completed this study. There was a significant difference of the AAE in 4-resistance conditions and 2-target knee angles with no interaction between these two factors. AAE was significantly smaller under the 75% of body weight resistance condition (p=0.001) compared with 25% and 100% of body weight conditions. There was a tendency toward AAE to be smaller at greater resistance, except during 100% of body weight. These data also indicated that the target angle of 0°-30° had more precise AAE than those of 30°-60°(p<0.001). Discussions: There was a tendency toward smaller AAE at greater resistance conditions; the minimal AAE appeared at 75% but not 100% of body weight. This might due to the increased sensory input led by more muscle activities at greater resistance conditions, but when the resistance reached the body weight, the results of the test would be hampered. On the other hand, a smaller AAE appeared at the target angle of 0°-30°. This might result from the “screw home mechanism”, that is the increase tension in the knee joint capsule and more sensory inputs are provided by non-contractile tissues. Conclusions: The range in which the subject could bear performing closed chain resisted knee extension, the larger resistance resulted in a smaller AAE and a target angle of 0°-30°had a smaller AAE than those of 30°-60°. Further studies of a more precise standardized protocol to assess knee joint reposition sense in different age groups or diseases are needed, and the parameters measured in our study could be taken into account.
目錄 i
表目錄 iv
圖目錄 v
附錄 vi
中文摘要 vii
英文摘要 ix

第一章 前言
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究問題與假說 3
第四節 名詞定義 4

第二章 文獻回顧
第一節 膝關節本體感覺的重要性 5
第二節 本體感覺的定義與測試方法 5
第三節 本體感覺的來源 6
第四節 膝關節本體感覺的測試方法 7
第五節 關節角度配對測試所包含的要素 8
第六節 關節角度配對測量之信度 9
第七節 負荷阻力狀況下對關節角度配對測試的影響 11
第八節 不同負荷阻力狀況對臨床上膝關節本體感覺測量的必要性 12

第三章 研究方法
第一節 先驅實驗 13
第二節 受試者 14
第三節 研究變項定義 15
第四節 測量工具 15
第五節 測量方法 16
第六節 測量流程 16
第七節 資料分析與統計 18

第四章 結果
第一節 先驅實驗的重複測試信度 19
第二節 不同作用因子對膝關節角度配對之差異 20
第三節 膝關節角度配對在不同負荷阻力下之差異 20
第四節 膝關節角度配對在不同目標角度之差異 21
第五節 不同目標角度下不同負荷阻力對膝關節角度配對之差異 22

第五章 討論
第一節 先驅實驗具高度重複測試信度 23
第二節 測量姿勢影響膝關節角度配對絕對誤差值 24
第三節 不同負荷阻力會影響膝關節角度配對絕對誤差值 25
第四節 不同目標角度會影響膝關節角度配對絕對誤差值 27
第五節 分別在不同目標角度下未見不同負荷阻力對角度配對絕對誤差值的影響 29
第六節 性別與慣用側不影響膝關節角度配對絕對誤差值 29
第七節 研究之限制 31
第八節 臨床應用與未來發展方向 32

第六章 參考文獻 33

表 目 錄
表1. 膝關節組織內關節感受器之種類、功能、及分佈位置 39
表2. 不同負荷阻力下本體感覺角度配對測試之相關文獻 40
表3. 先驅實驗:關節角度配對測試在不同負荷阻力之重複測試信度 41
表4. 受試者之基本資料表 42
表5. 全體受試者在不同負荷狀況下大小兩目標角度之二因子變異數分析摘要表 43
表6. 全體受試者在四種不同負荷阻力下關節角度配對之絕對誤差值 44
表7. 全體受試者在兩種不同目標角度下關節角度配對之絕對誤差值 45
表8. 全體受試者在不同目標角度下與四種不同負荷阻力下關節角度配對之絕對誤差值 46


圖 目 錄
圖1. 理論架構 47
圖2. 周邊感覺神經受器訊息傳入中樞及中樞往下傳至肌肉之表示圖 48
圖3. 負荷阻力儀(EN-Dynamic, Enraf-Nonius B.V., Delft, The Netherlands) 49
圖4. 單腳踩EN-Dynamic負荷阻力儀接受不同負荷測試之情形 50
圖5. 電子量角器(Electrogoniometer, ADU301, Biometrics Ltd., UK) 51
圖6. 電子量角器固定於受測肢之情形 52



附 錄
附錄一 國立台灣大學醫學院附設醫院臨床試驗受試者說明及同意書 53
附錄二 受試者基本資料記錄表 55
1.Williams GN, Chmielewski T, Rudolph K, Buchanan TS, Snyder-Mackler L. Dynamic knee stability: current theory and implications for clinicians and scientists. J Orthop Sports Phys Ther 2001;31:546-66.
2.Sharma L. Proprioceptive impairment in knee osteoarthritis. Rheum Dis Clin North Am 1999;25:299-314.
3.Biedert R. Contribution of the three levels of nervous system motor control: spinal cord, lower brain, cerebral cortex. J Orthop Res 1993;11:686-95.
4.Borsa PA, Lephart SM, Irrgang JJ, Safran MR, Fu FH. The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med 1997;25:336-40.
5.Lephart SM, Fu HF. Proprioception and Neuromuscular Control in Joint Stability. 1st ed. Pittsburgh: Human Kinetics; 2000.
6.Baker V, Bennell K, Stillman B, Cowan S, Crossley K. Abnormal knee joint position sense in individuals with patellofemoral pain syndrome. J Orthop Res 2002;20:208-14.
7.Barrack RL, Skinner HB, Buckley SL. Proprioception in the anterior cruciate deficient knee. Am J Sports Med 1989;17:1-6.
8.Barrett DS. Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br 1991;73:833-7.
9.Barrett DS, Cobb AG, Bentley G. Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br 1991;73:53-6.
10.Garsden LR, Bullock-Saxton JE. Joint reposition sense in subjects with unilateral osteoarthritis of the knee. Clin Rehabil 1999;13:148-55.
11.Marks R. Further evidence of impaired position sense in knee osteoarthritis. Physiother Res Int 1996;1:127-36.
12.Petrella RJ, Lattanzio PJ, Nelson MG. Effect of age and activity on knee joint proprioception. Am J Phys Med Rehabil 1997;76:235-41.
13.Skinner HB, Barrack RL, Cook SD, Haddad RJ, Jr. Joint position sense in total knee arthroplasty. J Orthop Res 1984;1:276-83.
14.Stillman BC, McMeeken JM. The role of weightbearing in the clinical assessment of knee joint position sense. Aust J Physiother 2001;47:247-53.
15.Kramer J, Handfield T, Kiefer G, Forwell L, Birmingham T. Comparisons of weight-bearing and non-weight-bearing tests of knee proprioception performed by patients with patello-femoral pain syndrome and asymptomatic individuals. Clin J Sport Med 1997;7:113-8.
16.Lu TW, O''Connor JJ. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model. Proc Inst Mech Eng 1996;210:71-9.
17.Lu TW, O''Connor JJ. Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. J Anat 1996;189:575-85.
18.Schmidt RA. Sensory contribution to motor control. In: Schmidt RA, Lee TD, editors. Motor Control and Learning: A Behavioral Emphasis. 3rd ed: Champaign: Human kinetics; 1999.p.95-129.
19.Cafarelli E, Bigland-Ritchie B. Sensation of static force in muscles of different length. Exp Neurol 1979;65:511-25.
20.Lephart SM, Pincivero DM, Rozzi SL. Proprioception of the ankle and knee. Sports Med 1998;25:149-55.
21.Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ. Effects of fatigue on knee proprioception. Clin J Sport Med 1997;7:22-7.
22.Rothwell J, editor. Control of Human Voluntary Movement. 2nd ed. London: Chapman & Hall; 1994.
23.Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O. Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol 1989;44:M118-27.
24.Clark FJ. Information signaled by sensory fibers in medial articular nerve. J Neurophysiol 1975;38:1464-72.
25.Schultz RA, Miller DC, Kerr CS, Micheli L. Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am 1984;66:1072-6.
26.Ashton-Miller JA, Wojtys EM, Huston LJ, Fry-Welch D. Can proprioception really be improved by exercises? Knee Surg Sports Traumatol Arthrosc 2001;9:128-36.
27.Skinner HB, Barrack RL, Cook SD. Age-related decline in proprioception Clin Orthop 1984:208-11.
28.Barrack RL, Skinner HB, Brunet ME, Haddad RJ, Jr. Functional performance of the knee after intraarticular anesthesia. Am J Sports Med 1983;11:258-61.
29.Barrack RL, Skinner HB, Cook SD, Haddad RJJr. Effect of articular disease and total knee arthroplasty on knee joint-position sense. J Neurophysiol 1983;50:684-7.
30.Grob KR, Kuster MS, Higgins SA, Lloyd DG, Yata H. Lack of correlation between different measurements of proprioception in the knee. J Bone Joint Surg Br 2002;84:614-8.
31.Marks R, Quinney AH. Reliability and validity of the measurement of position sense in women with osteoarthritis of the knee. J Rheumatol 1993;20:1919-24.
32.Marks R. An investigation of the influence of age, clinical status, pain and position sense on stair walking in women with osteoarthrosis. Int J Rehabil Res 1994;17:151-8.
33.Marks R, Quinney HA, Wessel J. Proprioceptive sensibility in women with normal and osteoarthritic knee joints. Clin Rheumatol 1993;12:170-5.
34.Bullock-Saxton JE, Wong WJ, Hogan N. The influence of age on weight-bearing joint reposition sense of the knee. Exp Brain Res. 2001;136:400-6.
35.Birmingham TB, Kramer JF, Inglis JT, Mooney CA, Murray LJ, Howler PJ, et al. Effect of a neoprene sleeve on knee joint position sense during sitting open kinetic chain and supine closed kinetic chain tests. Am J Sports Med 1998;26:562-6.
36.Gandevia SC, McCloskey DI. Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. J Physiol 1976;260:387-407.
37.Vallbo AB. Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol Scand 1974;90:319-36.
38.Rymer WZ, D''Almeida A. Joint position sense: the effects of muscle contraction. Brain 1980;103:1-22.
39.Voss DE, Ionta MK, Myers BJ, editors. Proprioceptive neuromuscular facilitation: Patterns and Techniques. 3rd ed. Philadelphia: Harper and Row; 1985.
40.Sjolander P, Johansson H, Djupsjobacka M. Spinal and supraspinal effects of activity in ligament afferents. J Electromyogr Kinesiol 2002;12:167-76.
41.Johansson H, Sjolander P, Sojka P. A sensory role for the cruciate ligaments. Clin Orthop 1991:161-78.
42.Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, et al. Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res 2002;143:276-85.

43.Perrin DH, Shultz SJ. Models for clinical research involving proprioception and neuromuscular Control. In: Lephart SM, Fu FH, editors. Proprioception and Neuromuscular Control in Joint Stability. 1st ed. Pittsburgh: Human Kinetics; 2000. p. 349-62.
44.Fleiss JL. The design and analysis of clinical experiments. New York: Wiley; 1986.
45.Hall SJ. Basic Biomechanics. 4th ed. Boston: McGraw-Hill; 2003. p. 244-46.
46.Skoglund S. Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand 1956;36:1-101.
47.Macefield G, Gandevia SC, Burke D. Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J Physiol 1990;429:113-29.
48.Lackner JR, Rabin E, DiZio P. Fingertip contact suppresses the destabilizing influence of leg muscle vibration. J Neurophysiol 2000;84:2217-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔