(3.238.174.50) 您好!臺灣時間:2021/04/20 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥君
研究生(外文):Yan-Chun Chen
論文名稱:考慮檢驗誤差的經濟最佳化檢驗策略
論文名稱(外文):Economic optimization of inspection with inspection errors
指導教授:徐世輝徐世輝引用關係
指導教授(外文):Shey-Huei Sheu
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:63
中文關鍵詞:檢驗誤差成本最小化預防保養不完全製程整合模式
外文關鍵詞:inspection errorsthe cost minimizing policypreventive maintenanceimperfect processintegrated model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
檢驗是品質管理中控制產品品質非常重要的方法之一,以確保產品品質與滿足顧客需求,在檢驗的過程中有時因為人為因素或技術限制而可能造成檢驗上的誤判,因此推廣考慮檢驗誤差之部份,使論文更接近實際生產狀態。
有時因為製程的特性,使得製程檢驗不可行,因此必須實施檢驗產品之離線檢驗,我們提出離線檢驗的最佳策略,在最佳策略中有二個部份要考慮,即最佳沒有檢驗策略與最佳檢驗策略,討論何者可以使得期望成本較低,由於企業競爭的激烈,顧客需求至上,必須避免將不良品送出,造成顧客的抱怨,失去銷售的機會及公司信譽的損失,為了做比較,特別針對三個策略(零缺點、完整資訊及不完整資訊)做一個成本上的分析,可以知道檢驗的需要性、期望檢驗數量、第一個檢驗點及總成本等資訊。
我們提出印刷電路基板鍍銅的最佳檢驗策略,找出批量的第一個檢驗點及平均檢驗數量,使品質管制部門有一套依據的標準,文中將考慮到檢驗誤差的問題,使模式更一般化,我們舉一個數值分析說明當製程轉換的機率服從間斷韋伯分配時,各參數的改變對最佳解的影響。
對於製程檢驗,我們考慮一個整合生產、維修、檢驗與存貨方面的問題,對於不完全製程和維修策略考慮允許缺貨條件與檢驗誤差的最佳檢驗週期、檢驗次數與生產批量,假設製程在非控制狀態下會產生一定比例的不良品,數值分析探討允許缺貨條件和檢驗誤差對成本的影響,執行預防保養可以降低成本,預防保養的程度也會影響最佳值。
In quality management, inspection is a very important method for controlling the quality of the product to insure the quality of the product and satisfaction of the customers. In this paper, we extend the optimal inspection policy to consider the effects of inspection errors due to human or technological limitations. The existence of such errors is well documented. Our model represents a step closer to the real world situation.
Sometimes, it may not be feasible to carry out the process inspection due to processing characteristics. It is necessary to implement off-line inspection of the product. We will propose the optimal policy for off-line inspection. To develop the optimal policy, we must consider two parts: (1) the optimal disposition with no inspection, and (2) the globally optimal inspection policy. In either case, the objective is to minimize expected cost. Because of intensive business competition, it is imperative that we do not allow non-conforming units to reach the customer thereby impairing the company’s reputation. For sake of comparison, we perform cost analyses for three special inspection policies: zero-defects, perfect information and imperfect information. We will know the information of need for inspection, number of inspections, first unit inspected and total cost.
We propose the optimal policy for verifying the quality of plating copper on a printed circuit board. Models are developed to determine the first unit inspected and the average number to be inspected in a batch, assuming the involvement of a quality-control department with a standard procedure. Furthermore, issues associated with inspection errors were considered to generalize the proposed mathematical model. Moreover, numerical analysis was used to explain the effect of the change of each parameter on the optimal solution when the probability of a transition between states follows the discrete Weibull distribution.
For the process inspection, we integrate the production/maintenance /inspection/inventory problem to consider shortages and inspection errors for an imperfect production process and maintenance. We find the optimal inspection interval, the expected number of inspections and economic production quantity. When the production process is “out-of-control”, some defective items are produced. Numerical examples illustrate the effect of shortages and inspection errors on the cost. Performing the preventive maintenance is shown to reduce the cost. The levels of the preventive maintenance also impact the optimal.
中文摘要…………………………………………………………….I
英文摘要………………………………………………...………….II
誌謝……………………………………………………………...…IV
目錄……………………………………………………………...….V
圖目錄……………………………………………………………..VII
表目錄 ………………………………………..…………………..VIII
符號一覽表………………………………………………………...IX
第一章 緒論………………………………………………....………1
1.1問題背景及研究目的…………………….………….…….1
1.2相關文獻探討…………………………….………………..2
1.3研究範圍與限制…………………………………………...4
1.4論文架構……………………………………………….…..5
第二章 考慮檢驗誤差的最佳離線檢驗策略………………………7
2.1前言 ………………………………………………………..7
2.2數學模式…………………………………………………...8
2.3最佳策略…………………………………………………..11
2.4數值分析…………………………………………………..16
第三章 一般化的最佳離線檢驗策略……………………………...27
3.1簡介………………………………………………………..27
3.2數學模式…………………………………………………..28
3.3最佳策略…………………………………………………..30
3.4數值分析…………………………………………………..33
第四章 考慮檢驗誤差的最佳製程檢驗策略……………………...43
4.1簡介………………………………………………………..43
4.2數學模式…………………………………………………..44
4.3最佳解…………………………………………….……….49
4.4數值分析……………………………………………….….50
第五章 結論與未來研究方向……………………………………...53
5.1結論………………………………………………………..53
5.2未來研究方向……………………………………………..54
參考文獻…………………………………………………………....55
附錄…………………………………………………………….…...59
作者簡介…………………………………………………………....63
[1] Banerjee, P.K. and M.A. Rahim, “Economic design of -chart under Weibull shock models,” Technometrics, 30, 407-414 (1988).
[2] Barlow R.E. and F. Proschan, Mathematical theory of reliability, Wiley, New York (1967).
[3] Ben-Daya, M. and M. Makhdoum, “Integrated production and quality model under various preventive maintenance policies,” Journal of the Operational Research Society, 49, 840-853 (1998).
[4] Ben-Daya, M., “Integrated production maintenance and quality model using the imperfect maintenance concept,” IIE Transactions, 31, 491-501 (1999).
[5] Ben-Daya, M., “The economic production lot-sizing problem with imperfect production process and imperfect maintenance,” International Journal of Production Economics, 76, 25-264 (2002).
[6] Chen, M. and R.M. Feldman, “Optimal replacement policies with minimal repair and age-dependent cost,” European Journal of Operational Research, 98, 75-84 (1997).
[7] Hariga, M. and M. Ben-Daya, “Note: the economic manufacturing lot-sizing problem with imperfect production process: bounds and optimal solutions,” Naval Research Logistics, 45, 423-432 (1998).
[8] Hassin R., “A dichotomous search for a geometric random variable,” Operations Research, 32: 423-439 (1984).
[9] He Q.M., Y. Gerchak and A. Grossfeld-Nir, “Optimal inspection order when process failure rate is constant,” International Journal of Reliability, Quality and Safety Engineering, 3(1), 25-41 (1996).
[10] Kander Z., “Inspection policies for deteriorating equipment characterized by N quality levels,” Naval Research Logistics Quarterly, 25, 243-255 (1978).
[11] Kijima, M., H. Morimura and Y. Suzuki, “Periodical replacement problem without assuming minimal repair,” European Journal of Operational Research, 37, 194-203 (1988).
[12] Kijima, M., “Some results for repairable systems with general repair,” Journal of Applied Probability, 26, 89-102 (1989).
[13] Lee, H.L. and M.J. Rosenblatt, “A production and maintenance planning model with restoration cost dependent on detection delay,” IIE Transaction, 21(4), 368-375 (1989).
[14] Lin T.M., S.T. Tseng and M.J. Liou, “Optimal inspection schedule in the imperfect production system under general shift distribution,” Journal of Chinese Institute of Industrial Engineers, 8(2), 73-81 (1991).
[15] Luss H. and Z. Kander, “Inspection policies when duration checking is non-negligible,” Operational Research Quarterly, 25, 299-309 (1974).
[16] Makis, V. and A.K.S. Jardine, “A note on optimal replacement policy under general repair,” European Journal of Operational Research, 69, 75-82 (1993).
[17] Mohandas, K., D. Chaudhuri and B.V.A. Rao, “Optimal periodic replacement for a deteriorating production system with inspection and minimal repair,” Reliability Engineering and System Safety, 37, 73-77 (1992).
[18] Munford, A.G. and A.K. Shahani, “A nearly optimal inspection policy,” Operational Research Quarterly, 23, 373-379 (1972).
[19] Nahmias, S., Production and Operations Analysis, McGraw Hill, Singapore (1997).
[20] Nakagawa, T., “A summary of imperfect preventive maintenance policies with minimal repair,” R.A.I.R.O Operations Research, 14(3), 249-255 (1980).
[21] Nakagawa T., “Periodic inspection policy with preventive maintenance,” Naval Research Logistics Quarterly, 31, 33-40 (1984).
[22] Pham, H. and H. Wang, “Invited review imperfect maintenance,” European Journal of Operational Research, 94, 425-438 (1996).
[23] Porteus, E.L., “Optimal lot sizing, process quality improvement and setup cost reduction,” Operations Research, 34, 137-144 (1986).
[24] Porteus E.L., “The impact of inspection delay on process and inspection lot sizing,” Management Science, 36(8), 999-1007 (1990).
[25] Rahim, M.A., “Joint determination of production quantity, inspection schedule, and control chart design,” IIE Transactions, 26(6), 2-11 (1994).
[26] Raz T., Y.T. Herer and A. Grosfeld-Nir, “Economic optimization of off-line inspection,” IIE Transactions, 32, 205-217 (2000).
[27] Savits, T.H., “A cost relationship between age and block replacement policies,” Journal of Applied Probability, 25, 789-796 (1988).
[28] Rosenblatt, M.J. and H.L. Lee, “Economic production cycles with imperfect production process,” IIE Transactions, 18, 48-55 (1986).
[29] Sheu, S.H. and W.S. Griffith, “Multivariate age-dependent imperfect repair,” Naval Research Logistics, 38, 839-850 (1991).
[30] Sheu, S.H., “Optimal block replacement policy with multiple choice at failure,” Journal of Applied Probability, 29, 121-141 (1992).
[31] Sheu, S.H., W.S. Griffith and T. Nakagawa, “Extended optimal replacement model with random minimal repair cost,” European Journal of Operational Research, 85, 636-649 (1995).
[32] Sheu, S.H. and W.S. Griffith, “Optimal number of minimal repairs before replacement of a system subject to shocks,” Naval Research Logistics, 43, 319-333 (1996).
[33] Sheu, S.H., “A modified block replacement policy with two variables and general random minimal repair cost,” Journal of Applied Probability, 33, 557-572 (1996).
[34] Silver, E.A. and R. Peterson, Decision systems for inventory management and production planning, John Wiley, New York (1985).
[35] Tseng, S.T., R.H. Yeah and W.T. Ho, “Imperfect maintenance for deteriorating production systems,” International Journal of Production Economics, 55, 191-201 (1998).
[36] Wang, C.H. and S.H. Sheu, “Simultaneous determination of the optimal production-inventory and product inspection policies for a deteriorating production system,” Computers & Operations Research, 28, 1093-1110 (2001).
[37] Zacks, S. and W.J. Fenske, “Sequential determination of inspection epochs for reliability system with general lifetime distributions,” Naval Research Logistics Quarterly, 20, 377-386 (1973).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔