(3.215.183.251) 您好!臺灣時間:2021/04/22 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏曉楣
研究生(外文):Yan-Hsiao-Mei
論文名稱:以奈米模板法合成類石墨結構碳化矽奈米管
論文名稱(外文):Polycarbosilane-derived Si-C nanotubes with graphite-like structure by nanotemplate method
指導教授:周賢鎧
指導教授(外文):Shyankay Jou
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:76
中文關鍵詞:奈米管陽極氧化鋁模板碳化矽場發射
外文關鍵詞:nanotubeAAO templateSiCField emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對結合以奈米孔洞模板製造奈米尺寸材料的技術,以及使用含矽高分子為原料來製做中空奈米管,並對所形成的材料進行結構與成份分析,用以與現有之奈米碳管比較。本論文也對所形成的奈米管進行場發射性質量測,以了解其應用於真空電子元件的潛力。
使用0.2 m孔隙直徑的多孔性氧化鋁碟片為模板,將聚碳矽烷溶液注入模板內,再以真空熱分解方式成功的獲得奈米管狀物。奈米管狀物的尺寸決定於模板的孔隙尺寸,且其長度可以達到與多孔性氧化鋁模板相當為60 m。
使用聚碳矽烷為原料所形成的奈米管的結構與成份分別依據電子繞射,以及X光能量分散光譜分析,所得到的結構接近於現存的奈米碳管,而其成份則為具有20%至40%的矽。論文的實驗流程與材料組合雖然沒有形成碳化矽奈米管,然而所形成含矽的奈米碳管預期將有新穎的性質可供使用。
本論文所製得的奈米管陣列可於小於2.8~3.1 V/m的turn-on電場強度發射電子,與一般奈米碳管相當,其飽和電流密度約為10-4 A/cm2。建議未來進行場發射元件製造時宜以較薄的模板來形成奈米管,提高其場發射性質。
This thesis investigated the process regarding the fabrication of self-organized nanotubes, composing of carbon and silicon, by the pyrolysis of polycarbosilane in anodic alumina nanoholes. The nanotube arrays prepared here is well aligned with high density and uniformity.
We could contain the nanotubes of 0.2μm in diameter and nearly 60μm in length. This is because both the diameter and the length of nanotubes are controllable by using the template and also the Al2O3 template provides a perfect isolation of nanotube from each other.
At pyrolysis temperatures in the rang of 900℃ and higher, the PCS can form CNTs containing 20~40% Si. These nanotubes are good property of field-emission compare with common carbon-nanotube. The field-emission is turn on at a working voltage electron up less than 2.8~3.1 V/μm and the saturated an electric current of 10-4A/cm2.
The nanotube growth is controllable by using the nanotemplate. It opened a pathway toward nanoelectronic device fabrication. We suggest to use thin slice of the AAO template to grow CNT for field-emissin devices in the future.
中文摘要……………………………………………………………………………..Ⅰ
英文摘要………………………………………………...…………………………...Ⅱ
誌謝………………….…………………………………………………………….…Ⅲ
目錄……………………………….………………………….………………………Ⅳ
圖索引………………..……………………….………………………………………V
第一章 緒論……………….…………………………………………….…………..1
1-1 前言 ..…..…………………………………..……………………………….1
1-2 奈米碳管合成回顧……………………………………………………..…...4
1-2-1氣相反應合成奈米碳管……..……………………………..…………...4
1-2-2固相反應合成奈米碳管………………………………………………...6
1-3 聚碳矽烷製程碳化矽回顧……………………………………………….…7
1-3-1聚碳矽烷熱分解形成碳化矽過程……………….……………………..7
1-3-2聚碳矽烷於氫氣氣氛下的熱分解反應…………………………..….…8
1-3-3真空氣氛下的熱分解反應………………………..……………..…….10
1-4 聚碳矽烷加觸媒成長奈米碳管………………………………………..….14
   1-4-1 A-tyep PCS生長奈米碳管…………………………………………….14
   1-4-2 L-type PCS生長奈米碳管…………………………………………….15
1-5 陽極處理氧化鋁模板回顧………………………………………………...17
1-6 以氧化鋁模板製作奈米管回顧…………………………………………...19
1-7 研究目的…………………………………………………………………...20
第二章 實驗方法…………………………………………………...……………...21
2-1 使用原料………………………………………..……….…………………21
2-2 分析及試片製作………………………………………..……….…………22
2-3 儀器設備………………………………...…………………………………23
2-4 實驗流程Ⅰ…………………………………..…………………………….28
2-5 實驗流程Ⅱ(浸泡式)……………………………………………..………..30
2-6 實驗流程Ⅲ (粉末熱融)………………………..…………………………34
2-7 實驗流程Ⅳ (機械馬達)……………………..……………………………36
2-8 實驗流程Ⅴ(成份與結構分析)………………………………………….38
第三章  結果與討論……………………………………………………….…….40
3-1 陽極氧化鋁模板製程………………………………………..…………….40
3-2 將AAO浸泡於聚碳矽烷溶液中的充填反應改善……………………….41
3-3 浸泡式控制管徑大小…………………………………………..………….44
3-4 熱融方式控制管徑大小…………………………………………………...47
3-5 使用機械馬達抽氣的方式控制管徑大小………………………………...50
3-6 成分與結構………………………………………………………………...58
3-7 結構模型…………………………………………………………………...64
3-8 場發射性質量測…………………………………………………………...65
第四章 結論……………………………………………………………………..69
參考文獻……………………………………………………………………………..70
1. S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354, 56 (1991).
2. A. S. Edelstein and R. C. Cammarata, Chap. 1 in “Nanomaterails: Synthesis, Properties and Application”, Ed. By A. S. Edelstein and R. C. Cammarata, IOP Publishing, (1996).
3. H. Ajiki and T. Ando, “Carbon Nanotubes as Quantum Wires on a Cylinder Surface”, Solid State Commun., 102, 135 (1997).
4. D. Normile, “Nanotubes Generate Full-Color Displays”, Science, 286 2056 (1999).
5. Yoshikazu Nakayama, Hidehiro Nishijima, Seiji Akita, Ken I. Hohmura, Shige H. Yoshimura, and Kunio Takeyasu, “Microprocess for fabricating carbon-nanotube probes of a scanning probe microscope”, J. Vac. Sci. Technol. B18(2), 661, (2000).
6. 工業材料雜誌, 182, 64, (2002).
7. G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature(London)393, p346 (1998).
8. M. M. J. Treacy, T. W. Ebbesen & J. M. Gibson, “Exceptionally high Young''s modulus observed for individual carbon nanotubes”Nature 381, 678 (1996).
9. 許肇根,”以聚碳矽烷至被奈米碳管及其場發射性質之研究”,國立台灣科技大學工程技術研究所材料科技學程碩士論文(2001)
10. C. R. “Membrane-based synthesis of nanomaterials”, Chem, Mater., 8, 1739, (1996).
11. Z. H. Yuan, H. Huang, H. Y. Dang, J. E. Cao, B. H. Hu, and S. S. Fan, “Field emission property of highly ordered monodispersed carbon nanotube arrays”, Appl. Phys. Lett. 78, 3127, (2001).
12. Tatsuya Iwasaki, Taiko Motoi, and Tohru Den, “Multiwalled carbon nanotubes growth in anodic alumina nanoholes”, Appl. Phys. Lett. 75, 2044, (1999).
13. Y. Satio, K. K. Kawabata and T. Matsumoto, “Carbon nanocapsules and single-layered nanotubes producedwith platinum-group metal by arc-discharge”, J. Appl. Phys. 80,3062, (1996).
14. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert and R. E. Smalley, “Self assembly of tubular fullerenes”, J. Phys. Chem., 99, 10694, (1995).
15. C. Jourent, P. Bernier, “Production of carbon nanotubes”, Appl. Phyas, A 67, 1, (1998).
16. M. J. Yacaman, M. M. Yoshida, L. Rendon, J. G. Santiesteban, “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett. 62, 202, (1993).
17. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 265, 1212, (1994).
18. W. K. Hsu, Y. Q. Zhu, S. Ttasobares, H. Terrones, M. Terrones, N. Grobert, H. Takikawa, J. P. Hare, H. W. Kroto, D. R. M. Walton, “Solid-phase production of carbon nanotubes”, Appl. Phys. A68, 493, (1999).
19. D. Sarangi, C. Godon, A. Granier, R. Moalic, A. Goullet, G. Turban, O. Chauvet, “Carbon nanotubes and nanostructures grown from diamond-like carbon and polyethylene”, Appl. Phys. A, 765, (2001).
20. E. Czerwosz, P. Dluaewski, “From fullerenes to carbon nanotubes by Ni catalysis”, Diam. Rel. Mater. 9, 901, (2000).
21. Thomas E. Paulson and Carlo G. Pantano, “Synthesis of Silicon Carbide Thin Films with Polycarbosilane”, J. Am. Ceram. Soc., 80[9]2333, (1997).
22. Ken-ichi Kakimoto and Fumihiro Wakai, “Synthesis of Si-C-O Bulk Ceramics with Various Chemical Compositions from Polycarbosilane”, J. Am. Ceram. Soc., 82[9]2337, (1999).
23. Michio Takeda, Akira Urano, Jun-ichi Sakamoto, and Yoshikazu Imai, “Microstructure and Oxidation Behavior of Silicon Carbide Fibers Derived from Polycarbosilane”, J. Am. Ceram. Soc., 83[5]1171, (2000).
24. F. S. Ohuchi, T. J. Lin, J. A. Antonelli and D. J. Yang, “Preparation and in-situ characterization of polycarbosilane thin films by d. c. plasma-enhanced deposition”, Thin Solid Films, 245, 10, (1994).
25. Norimasa Umesaki, Carlo Guy, Nagao Kamijo, Kiyohito Okamura, Kentaro Suzuya, Kenji Suzuki, “An XAFS study of the poly-carbosilane conversion to SixC1-x”, Journal of Non-Crystalline Solids 177, 147-153, (1994).
26. Kentaro Suzuya, Kaoru Shibata, Kiyohito Okamura and Kenji Suzuki, “The polycarbosilane to SixC1-x conversion studied by inelastic neutron scattering and infrared absorption”, Journal of Non-Crystalline Solids 150, 255, (1992).
27. Michio Takead, Akinori Saeki, Jun-ichi Sakamoto, Yoshikazu Imai, and Hiroshi Ichikawa, “Effect of Hydrogen Atmosphere on Pyrolysis of Cured Polycarbosilane Fibers”, J. Am. Ceram. Soc., 83[5]1063, (2000).
28. 尤光先編譯,“鋁的陽極處理技術”,徐氏基金會,民72.
29. J. Li, C. Papadopoulos, J. M, Xu, and M. Moskovits,“Highly-ordered carbon nanotube arrays for electronics applications”, Appl. Phys. Lett. 75, 367, (1999).
30. V. M. Cepak, J. C. Hulteen, G. Che, K. B. Jirage, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, “Fabrication and characterization of concentric-tubular composite micro- and nanostructures using the template-synthesis method”, J. Mater. Res. 13, 3070, (1998).
31. 王正全, 周淑金, 李秉璋, 王正和, “金屬氧化物奈米模板製備及其應用簡介”, 工業材料雜誌, 185期, 165, (2002).
32. T. Iwasaki, T. Motoi, and T. Den, “Multiwalled carbon nanotubes growth in anodic alumina nanoholes”, Appl. Phys. Lett. 75, 2044, (1999).
33. O. A. Nerushev, R. E. Morjan, D. I. Ostroviskii, M. Sveningsson, M. Jönsson, F. Rohmund, E. E. Campbell, “The temperature dependence of Fe-catalysed growth of carbon nanotubes on silicon substrates”, Phys. B 323, 51, (2002).
34. K. Jernadi, A. Fonseca, J. B. Nagy, D. Bernaerts and A. A. Lucas, “Fe-catalyzed carbon nanotube formation”, Carbon 34, 10, 1249, (1996).
35. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, “Large-Scale Synthesis of Aligned Carbon Nanotubes”, Science, 274, 1701, (1996).
36. Yoshikazu Nakayama and Mei Zhang, “Synthesis of Carbon Nanochaplets by Catalytic Thermal Chemical Vapor Deposition”, J. Appl. Phys. 40, 492, (2001).
37. H. Cui, O. Zhou, and B. R. Stoner, “Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition”, J. Appl. Phy., 88, p6072, (2000).
38. Takashi Hirao, Korekiyo Ito, Hiroshi Furuta, Yoke Khin Yap, Takashi Ikuno, Shin-ichi Honda, Yusuke Mori, Takatomo Sasaki and Kenjiro Oura, “Formation of Vertically Aligned Carbon Nanotubes by Dual-RF-Plasma Chemical Vapor Deposition”, J. Appl. Phy., 40, p631, (2001).
39. H. M. Cheng, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons”, Appl. Phys. Lett., 72, 3282, (1998).
40. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science, 283, 512, (1999).
41. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provercio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass”, Science, 282, 1105, (1998).
42. A. Hamwi, H. Alvergant, S. Bonnany and F. Béguin, “Fluorination of carbon nanotubes”, Carbon 35, 6, 723, (1997).
43. S. Cui, C. Z. Lu, Y. L. Qiao, L. Cui, “Large-scale preparation of carbon nanotubes by nickel catalyzed decomposition of methane at 600℃”, Carbon 37, 2070, (1999).
44. Antonio B. Fuertes, “Template synthesis of carbon nanotubules by vapor deposition polymerization”, Carbon 40, 1597, (2002).
45. Aldo J. G. Zarbin, Roberto Bertholdo, Maria A. F. C. Oliverira, “Preparation, characterization and pyrolysis of poly(furfuryl alcohol) / porous silica glass nanocomposites: novel route to carbon template”, Carbon 40, 2413, (2002).
46. Ranjani V. Parthasarathy, K. L. N. Phani, and Charles R. Martin, “Template Synthesis of Graphitic Nanotubules”, Adv. Mater. 7, 11, 896, (1995).
47. 許振田, “利用MPECVD系統合成奈米碳管及其電子場發射性質研究”,國立清華大學材料科學工程學系碩士論文(1999).
48. 蔣銘瑞, “雷射鍍膜法合成奈米碳管之研究”, 國立清華大學材料科學工程學系碩士論文(2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔