(3.238.174.50) 您好!臺灣時間:2021/04/17 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王堅宇
研究生(外文):Wang Chien Yu
論文名稱:磁控濺鍍沉積LiMn2O4陰極之可撓性薄膜鋰電池之研究
論文名稱(外文):Studies on Sputter-deposited Lithium Manganese Oxide as Cathode Electrodes for Flexible Thin Film Lithium Batteries
指導教授:黃炳照黃炳照引用關係
指導教授(外文):Hwang Bing Joe
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:127
中文關鍵詞:鋰離子電池薄膜LiMn2O4
外文關鍵詞:Lithium ion batterythin-filmLiMn2O4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:135
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要是以磁控濺鍍法(RF Sputtering)沉積LiMn2O4陰極薄膜,且將沉積於矽晶片及鋁箔上,研究探討LiMn2O4陰極薄膜之基本性質與其充放電特性,並另以塑膠(Kapton)當做基材,以組成可撓式薄型鋰離子二次電池。
在本實驗中,嘗試著改變濺鍍壓力、濺鍍功率、基板加熱溫度及濺鍍時間等沉積參數,來探討LiMn2O4陰極薄膜得到結晶性之熱處理溫度(annealing),而本實驗中的最佳沉積條件為濺鍍壓力1.2×10-2torr、濺鍍功率70W、室溫下沉積15小時,在700℃退火溫度下得到結晶性LiMn2O4陰極薄膜;而充放電測試之電容量表現,隨著退火溫度增加,其電容量越高,確定了較好的結晶性將有助於電容量的提升;另外,多鍍一層氧化物,如氧化銦錫(ITO)、氧化錫(SnO2)於電流收集層和LiMn2O4之間,實驗結果發現,將LiMn2O4沉積於這些氧化物薄膜上,在室溫下就有(111)繞射鋒產生,約200℃退火溫度左右,其(111)、(311)及(400)繞射鋒皆很明顯,達到在低溫製程下即沉積出有結晶性的LiMn2O4陰極薄膜,將有利於沉積在塑膠基材上組成可撓式薄型鋰離子二次電池。而在薄型電池方面,其充放電特性分析上,表現不盡理想,歸咎於組裝密閉性問題及電池內部阻抗引起,故仍須改善。
The main objective of the present study is to investigate the LiMn2O4 cathode films deposited on the silicon substrate and Aluminum foil by means of RF-sputtering. The structural and surface morphology of the deposited films at various annealing temperatures were analyzed by employing XRD and SEM techniques. The LiMn2O4 cathode films were tested their charge - discharge characteristics and analyzed. The LiMn2O4 films were also deposited on plastic Kapton substrate to fabricate a flexible Li-ion micro-battery.
The LiMn2O4 films were deposited on Si and Al foil by changing the deposition conditions such as working pressure, sputtering power, substrate temperature in order to obtain high quality and homogeneous films. The structural and surface morphology of the deposited films were analyzed by means of X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the best deposition conditions to yield high quality films, from the film properties, at room temperature are: working pressure is 1.2×10-2 torr, sputtering power is 70 W and deposition time is 15 hrs. The crystallinity of the LiMn2O4 film was found for an annealing temperature at 700 0C. The cycle test was performed and it was found that the specific capacity of the film increases with the increase of the annealing temperature. It suggests that the crystallinity of the film increases with an increase in annealing temperature.
In order to bring down the annealing temperature to lower than that of kapton melting temperature, we have deposited an oxide layer of ITO or SnO2, between the contacts and active material. It was found that the diffraction peak (111) would appear even without heat treatment. The diffraction peaks (111), (311), (400) are obvious, when the film was annealed at 200 0C. This means that the crystallized LiMn2O4 cathode films can be produced at lower temperature. Our interest is to deposit LiMn2O4 film on a plastic Kapton substrate to make a Li-ion micro-battery more flexible. In this direction, we have designed and fabricated variety of geometry of cells using the Kapton substrate. However, the charge and discharge characteristics of the tested cells are not as good as films deposited on Al foil. In order to fabricate a flexible Li-ion micro-battery, we need to improve our design to avoid moisture or air leak and reduce the internal impedance of the battery.
中文摘要 I
英文摘要 II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.1 研究動機與目的 2
第二章 文獻回顧 3
2.1 鋰離子二次電池的起源 3
2.1.1 陽極 4
2.1.2 電解質 6
2.1.2.1 液態電解質 7
2.1.2.2 高分子電解質 7
2.1.3 陰極 12
2.1.3.1 LiCoO2系 14
2.1.3.2 LiNiO2系 15
2.1.3.3 LiMn2O4系 17
2.2 薄型鋰離子二次電池的發展 19
2.2.1 陽極 22
2.2.2 電解質 22
2.2.3 陰極 25
2.2.3.1 LiMn2O4陰極薄膜 28
2.2.4 基材的種類 29
2.2.5 LiMn2O4-cell薄膜電池 32
第三章 實驗 37
3.1 實驗儀器設備 37
3.2 實驗藥品 38
3.3 實驗流程 39
3.3.1 靶材製備 39
3.3.2 基材準備 40
3.3.2.1 矽晶片 40
3.3.2.2 鋁箔 41
3.3.2.3 塑膠基材(Kapton) 41
3.3.3 陰極薄膜製備 41
3.4 材料鑑定與分析 43
3.4.1 薄膜厚度的量測 43
3.4.2 XRD薄膜結構分析 43
3.4.3 SEM表面輪廓分析 44
3.4.4 ICP-AES薄膜成分分析 44
3.5 充放電行為測試 45
3.5.1 鈕扣型充放電測試 45
3.5.2 薄型電池充放電測試 49
第四章 結果與討論 52
4.1 LiMn2O4靶材製備 52
4.2 LiMn2O4陰極薄膜製備 55
4.2.1 濺鍍壓力的影響 57
4.2.2 濺鍍功率的影響 61
4.2.3 濺鍍基板溫度的影響 63
4.2.4 濺鍍時間與薄膜厚度的關係 65
4.2.5 ICP-AES薄膜成分分析 68
4.3 LiMn2O4 / Pt / Al 陰極系統 70
4.3.1 SEM表面輪廓分析 71
4.3.2 充放電特性分析 74
4.4 LiMn2O4 / ITO / Pt / Al 陰極系統 80
4.4.1 ITO薄膜沉積條件 81
4.4.1.1 X-ray結構分析 81
4.4.1.2 SEM表面型態分析 84
4.4.2 薄膜性質與特性分析 85
4.4.2.1 X-ray結構分析 85
4.4.2.2 SEM表面型態分析 87
4.4.2.3 充放電特性分析 90
4.5 LiMn2O4 / SnO2 / Pt / Al 陰極系統 96
4.5.1 SnO2薄膜沉積條件 96
4.5.1.1 X-ray結構分析 96
4.5.1.2 SEM表面型態分析 98
4.5.2 薄膜性質與特性分析 100
4.5.2.1 X-ray結構分析 100
4.5.2.2 SEM表面型態分析 102
4.5.2.3 充放電特性分析 105
4.6 薄型電池系統 112
第五章 結論 116
第六章 參考文獻 119
[1]Scrosati, B., Lithium rocking chair batteries an old concepts. Journal of the Electrochemical Society 1992, 139, 2776.
[2]Megahed, S.; Scrosati, B., Lithium-ion rechargeable batteries. Journal of Power Sources 1994, 51, 79.
[3]楊模樺, 嵌入式過渡金屬氧化物在鋰電池電極材料上的應用. 工業材料 2000, 157, 144.
[4]Winter, M.; Besenhard, J. O., Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta 1999, 45, (1-2), 31-50.
[5]Shodai, T.; Sakurai, Y.; Suzuki, T., Reaction mechanisms of Li2.6Co0.4N anode material. Solid State Ionics 1999, 122, (1-4), 85-93.
[6]Nikkei Electronics Asia. 20, February.
[7]Ogumi, Z., Polymer Electrolyte for Rechargeable Lithium Batteries. First International Symposium On Battery Materials 2000, 1.
[8]Armand, M. B.; Chabagno, J. M.; Duclot, M., Fast ion conduction in solids. Elsevier North-Holland. NewYork 1979.
[9]Ross-Murphy, S. B., Polymer Networks- Principles of heir Formation, Structure and Properties. Blackie Academic and Professional, London 1998, 288.
[10]Croce, F.; Brown, S. D.; Greenbaum, S. G.; Slane, S. M.; M.Salomon, Chem. Mater. 1993, 5, 1268.
[11]Abraham, K. M.; Alamgir, M., Solid State Ionics 1997, 70/71, 45.
[12]Frazer, E. J.; Phang, S., Titanium disulphide as a cathode material in Lithium batteries-a review. Journal of Power Sources 1981, 6, 307.
[13]Jacobson, A. J.; Chianelli, R. R.; Rich, S. M.; Whittingham, M. S., Amorphous molybdenum trisulfide:a new lithium battery cathode. Materials Research Bulletin 1979, 14, 1437.
[14]Molenda, J.; Stoklosa, A.; Bak, T., Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics 1989, 36, 53.
[15]Delmas, C.; Braconnier, J. J.; Haginmuller, P., A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction. Materials Research Bulletin 1982, 17, 117.
[16]Dahm, J. R.; Sacken, U. V.; Michal, C. A., Structure and electrochemistry of Li1+xNiO2 and A new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 1990, 44, 87.
[17]Passerini, S.; Scrosati, B.; Gorenstein, A., The intercalation of lithium in nickel oxide and its electrochemical properties. Journal of The Electrochemical Society 1990, 137, 3297.
[18]Xu, Q.; Wan, G., Rechargeable Li/LiMn2O4 battery with a polymeric solid electrolyte. Journal of power Sources 1993, 41, 315.
[19]Barker, J.; Pynenburg, R.; Koksbang, R., Determination of thermodynamic, kinetic and interfacial properties for the Li/LixMn2O4 system by electrochemical techniques. Journal of power Sources 1994, 52, 185.
[20]黃舜明, Design of Battery. First International Symposium On Battery Materials 2000, 1.
[21]Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0[22]Delmas, C., Alkali Metal Intercalation in Layered Oxides. Materials Science & Engineering B: Solid-State Materials for Advanced Technology 1989, B3, 97.
[23]Dyer, L. D.; Borie, B. S.; Smith, G. P., Alkaki metal-nickel oxides of the type MNiO2. Journal of the American Chemical Society 1954, 78, 1499.
[24]Goodenough, J. B.; Wickham, D. G.; Croft, W. J., Some ferromagnetic properties of the system LixNi2-xO2. Journal of Applied Physics 1958, 29, 382.
[25]Stoyanova, R.; Zhecheva, E., New data on chemical delithiation of LixNi2-xO2 (0.6[26]Thackeray, M. M.; Johnson, P. J.; Picciotto, L. A. D.; Bruce, P. G.; Goodenough, J. B., Electrochemical extraction of lithium form LiMn2O4. Materials Research Bulletin 1984, 19, 179.
[27]Souquet, J. L.; Duclot, M., Thin film lithium batteries. Solid State Ionics 2002, 148, (3-4), 375-379.
[28]Kanehori, K.; Matsumoto, K.; Miyauchi, K.; Kudo, T., Thin film solid electrolyte and its application to secondary lithium cell. Solid State Ionics 1983, 9&10, 1445.
[29]Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D., Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes. Journal of The Electrochemical Society 1996, 143, 3203.
[30]Jourdaine, L.; Souquet, J. L.; Delord, V.; Ribes, M., Lithium solid state glass-based microgenerators. Solid State Ionics 1988, 28-30, 1490.
[31]Dudney, N. J., Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. Journal of Power Sources 2000, 89, (2), 176-179.
[32]Julien, C. Solid-state microbatteries. 1996.
[33]Bates, J. B.; Dudney, N. J.; Luck, C. F.; Sales, B. C.; Zuhr, R. A.; D.Robertson, J., Deposition and Characterization of Li2O-SiO2-P2O5 Thin Film. J.Am. Ceram. Soc. 1993, 76, 929.
[34]Creus, R.; Sarradin, J.; Astier, R.; Pradel, A.; Ribes, M., The Use of Ionic and Mixed Conductive Glass in Micronbatteries. Mater. Sci. Eng. 1989, B3, 109.
[35]Jones, S. D.; Akridge, J. R., A Thin-Film Solid-State Microbatteries. Solid State Ionics 1992, 53, 628.
[36]Hamdoune, S.; Qui, D. T., Ionic Conductivity and Crystal Structure of Li1+xTi2-xInxP3O12. Solid State Ionics 1986, 18&19, 587.
[37]Bates, J. B.; Dudney, N. J.; Neudecker, B. J.; Hart, F. X.; Jun, H. P.; Hackneyc, S. A., Preferred Orientation of Polycrystalline LiCoO2 Films. Journal of The Electrochemical Society 2000, 147, 59.
[38]Hwang, K. H.; Lee, S. H.; Joo, S. K., Fabrication and characterization of an Li-Mn-O thin-film cathode for rechargeable lithium microbatteries. Journal of Power Sources 1995, 54, 224.
[39]Jones; D., S.; Akridge; R., J., Development and performance of a rechargeable thin-film solid-state microbattery. Journal of Power Sources 1995, 54, 63.
[40]Bates, J. B.; Dudney, N. J.; Lubben, D. C.; Gruzalski, G. R.; Kwak, B. S.; Yu, X.; Zuhr, R. A., Thin-film Rechargeable Lithium Battery. Journal of Power Sources 1995, 54, 58.
[41]Jones, S. D.; Akridge, J. R., A microfabricated solid-state secondary Li battery. Solid State Ionics 1996, 86-8, 1291-1294.
[42]Bates, J. B.; Dudney, N. J., Thin Film Rechargeable Lithium Batteries for Implantable Devices. American Society for Artificial Internal Organs , Inc. 1997, 43, M644.
[43]Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X., Rechargeable thin-film lithium batteries. Solid State Ionics 1994, 70/71, 619.
[44]Dudney, N. J.; Neudecker, B. J., Solid state thin-film lithium battery systems. Current Opinion in Solid State and Materials Science 1999, 4, 479.
[45]Bates, J. B.; Dudney, N. J.; Neudecker, B.; Ueda, A.; Evans, C. D., Thin-film Lithium and Lithium-ion Battery. Solid State Ionics 2000, 135, 30.
[46]Jones, S. D.; Akridge, J. R., Thin film rechargeable Li batteries. Solid State Ionics 1994, 69.
[47]Shokoohi, F. K.; Tarascon, J. M.; Wilkens, B. J.; Guyomard, D.; Chang, C. C., Low temperature LiMn2O4 spinel films for secondary lithium batteries. Journal of the Electrochemical Society 1992, 139, 1845.
[48]Liu, P.; Zhang, J.-G.; Turner, J. A.; Trac, C. E.; Benson, D. K., Lithium-Manganese-Oxide Thin-Film Cathodes Prepared by Plasma-Enhanced Chemical Vapor Deposition. Journal of The Electrochemical Society 1996, 146, 2001.
[49]Morcrette, M.; Barboux, P.; Perriere, J.; Brousse, T., LiMn2O4 thin films for lithium ion sensors. Solid State Ionics 1998, 112, 249.
[50]Van Zomeren, A. A.; Kelder, E. M.; Marijnissen, J. C. M.; Schoonman, J., Production of thin films of LiMn2O4 by electrospraying. Journal of Aerosol Science 1994, 25, 1229.
[51]Park, Y. J.; Kim, J. G.; Kim, M. K.; Chung, H. T.; Kim, H. G., Preparation of LiMn2O4 thin films by a sol-gel method. Solid State Ionics 2000, 130, 203.
[52]Lee, S.-H.; Liu, P.; Tracy, C. E.; Benson, D. K., All-solid-state rocking chair lithium battery on a flexible Al substrate. Electrochem Solid State Letters 1999, 2, 425.
[53]Rho, Y. H.; Kanamura, K., Fabrication of thin film electrodes for all solid state rechargeable lithium batteries. Journal of Electroanalytical Chemistry 2003, 559, 69.
[54]Baba, M.; Kumagai, N.; Kobayashi, H.; Nakano, O.; Nishidate, K., Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using V2O5 thin films for both electrodes. Electrochemical and Solid-State Letters 1999, 2, 320.
[55]Raffaelle, R. P.; Harris, J. D.; Hehemann, D.; Scheiman, D.; Rybicki, G.; Hepp, A. F., Facile route to thin-film solid state lithium microelectronic batteries. Journal of Power Sources 2000, 89, 52.
[56]Lee, J.-K.; Lee, S.-J.; Baik, H.-K.; Lee, H.-Y.; Jang, S.-W.; Lee, S.-M., Substrate effect on the microstructure and electrochemical properties in the deposition of a thin film LiCoO2 electrode. Electrochemical and Solid-State Letters 1999, 2, 512.
[57]Chiu, K.-F.; Hsu, F. C.; Chen, G. S.; Wu, M. K., Texture and Microstructure Development of RF Sputter-Deposited Polycrystalline Lithium Transition Metal Oxide Thin Films. Journal of The Electrochemical Society 2003, 150, A503.
[58]T. Ohzuku; Kitagawa, M.; Hirai, T., Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell (III) X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide. J. Electrochem. Soc. 1990, 137, 769.
[59]Yamada, A.; Tanaka, M., Jahn-Teller structural phase transition around 280 K in LiMn2O4. Materials Research Bulletin 1995, 30, 715.
[60]Hwang, B. J.; Santhanam, R.; Liu, D. G.; Tsai, Y. W., Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol-gel method. Journal of Power Sources 2001, 102, 326.
[61]Hwang, B. J.; Santhanam, R.; Huang, C. P.; Tsai, Y. W.; Lee, J. F., LiMn2O4 core surrounded by LiCoxMn2-xO4 shell material for rechargeable lithium batteries: Synthesis and characterization. Journal of the Electrochemical Society 2002, 149, A694.
[62]Hwang, B. J.; Santhanam, R.; Huang, C. P.; Tsai, Y. W.; Lee, J. F., Synthesis and characterization of LiMn2O4 core surrounded by LiCoxMn2-xO4 shell material for rechargeable lithium batteries. Journal of the Electrochemical Society 2002, 149, A694.
[63]Hwang, B. J.; Tsai, Y. W.; Santhanam, R.; Liu, D. G.; Lee, J. F., In situ x-ray absorption spectroscopy studies of nanosized LiAl0.15Mn1.85O4 cathode material in an aqueous solution. Journal of the Electrochemical Society 2003, 150, A335.
[64]Hwang, B. J.; Tsai, Y. W.; Santhanam, R.; Wu, Y. W.; Hu, S. G.; Lee, J. F.; Liu, D. G., Evolution of local electronic and atomic structure of Co-doped LiMn2O4 cathode material for lithium rechargeable batteries. Journal of Power Sources 2003, 123, 206.
[65]Hwang, B.-J.; Tsai, Y.-W.; Santhanam, R.; Hu, S.-K.; Sheu, H.-S., Structure transformation of LiAl0.15Mn1.85O4 cathode material during charging and discharging in aqueous solution. Journal of Power Sources 2003, 119-121, 727.
[66]Lee, J.-F.; Tsai, Y.-W.; Santhanam, R.; Hwang, B. J.; Yang, M.-H.; Liu, D.-G., Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures. Journal of Power Sources 2003, v 119-121, 721.
[67]Tsai, Y. W.; Santhanam, R.; Hwang, B. J.; Hu, S. K.; Sheu, H. S., Structure stabilization of LiMn2O4 cathode material by bimetal dopants. Journal of Power Sources 2003, 119-121, 701.
[68]Shokoohi, F. K.; Tarascon, J. M.; Wilkens, E. J., Fabrication of thin-film LiMn2O4 cathodes for rechargeable microbatteries. Appt. Phys. Lett. 1991, 59, 1260.
[69]Hwang, K. H.; Lee, S. H.; Joo, S. K., Characterization of Sputter-Deposited LiMn2O4 Thin Films for Rechargeable Microbatteries. Journal of the Electrochemical Society 1994, 141, 3296.
[70]Chiu, K.-F.; Hsiao, H. H.; Chen, G. S.; Liu, H. L.; Her, J. L.; Lin, H. C., Structural Evolution and Stability of RF Sputter Deposited Li xMn2-yO4 Thin Film Cathodes. Journal of the Electrochemical Society 2004, 151, A452.
[71]Chopra, K. L.; Major, S.; Pandya, D. K., Transparent conductors : A status review. Thin Solid Films 1983, 102, 1.
[72]Rottmann, M.; Heckner, K.-H., Electrical and structural properties of indium tin oxide films deposited by reactive DC sputtering. Journal of Physics D: Applied Physics 1995, 28, 1448.
[73]Nath, P.; Bunshah, R. F., Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique. Thin Solid Films 1980, 69, 63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔