(34.239.150.57) 您好!臺灣時間:2021/04/14 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾楷倫
論文名稱:丙烯酸丁酯反應蒸餾塔之設計與控制
論文名稱(外文):Design and Control Butyl Acrylate Reactive Distillation Column Process
指導教授:錢義隆
指導教授(外文):I-Lung Chien
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:179
中文關鍵詞:丙烯酸丁酯反應蒸餾
外文關鍵詞:Butyl AcrylateReactive Distillation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:481
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的係探討丙烯酸丁酯反應蒸餾塔製程之設計與控制。首先選擇合適的熱力學與動力學模式來描述程序,並使用Aspen Plus進行穩態模擬。本研究提出系統性最適化流程,以最小總年度成本(TAC)為目標,得到最適化之穩態設計及操作條件。接著以多重穩態分析找出在最適化設計條件下,產物純度高且為開環穩定之穩態條件,進行動態模擬。在控制策略上,依所剩可用來控制溫度之自由度分析,可提出五種溫度控制策略,從干擾排除測試來看,以丙烯酸/正丁醇進料比率控制塔內第六板溫度的單點溫度控制策略之結果較佳。
In this research, design and control of a reactive distillation column to produce butyl acrylate is studied. Suitable thermodynamic and kinetic model parameters are used to describe this process. A search procedure is proposed to obtain the optimum process design and operating condition of this process. The optimum process design and flowsheet is obtained by minimizing the Total Annual Cost (TAC) of this process. Three steady-state designs are obtained with respect to the minimum TAC. We found that the best steady-state condition having higher purity and also is openloop stable. Five temperature control strategies are studied for the best control. Simulation results demonstrate that the effective dynamic control is provided by a single loop control strategy that uses Acrylic_acid/Butanol feed ratio to control a tray temperature. This control strategy is able to maintain the purities of both product streams in the face of various disturbances.
致謝 Ⅰ
摘要 Ⅱ
Abstract Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 XII
第一章、緒論 1
第一節 前言 1
第二節 文獻回顧 3
第三節 研究動機 9
第四節 組織章節 11
第二章、熱力學與動力學模式 12
第一節 前言 12
第二節 熱力學模式建立與參數 13
第三節 蒸餘曲線圖(RCM) 19
第四節 動力模式建立與參數 25
第三章、程序最適化設計 28
第一節 前言 28
第二節 丙烯酸丁酯製程設計概念 29
第三節 TAC最適化流程設計 33
第四節 多重穩態分析 45
第五節 最適化穩態結果 56
第四章、動態模擬 59
第一節 前言 59
第二節 丙烯酸丁酯製程之控制架構 60
第三節 控制策略一(CS1) 62
第四節 控制策略二(CS2) 67
第五節 控制策略三(CS3) 87
第六節 控制策略四(CS4) 107
第七節 控制策略五(CS5) 132
第八節 干擾排除比較 154
第五章、結論 158
附錄A 熱力學模式 159
附錄B 計算TAC使用之公式 167
附錄C 控制器參數 171
參考文獻 172
[1] Aspen Plus, Release 11.1, Aspen Technology, Inc. (2001)
[2] Aspen Dynamics, Release 11.1, Aspen Technology, Inc. (2001)
[3] Al-Arfaj, Muhammad A., and Luyben, W. L., “Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column,” Ind. Eng. Chem. Res., 39, 9, 3298-3307, 2000.
[4] Al-Arfaj, Muhammad A., and Luyben, W. L., “Control Study of Ethyl tert-Butyl Ether Reactive Distillation,” Ind. Eng. Chem. Res., 41, 16, 3784-3796, 2002a.
[5] Al-Arfaj, Muhammad A., and Luyben, W. L., “Control of Ethylene Glycol Reactive Distillation Column,” AIChE. Journal, 48, 4, 905-908, 2002b.
[6] Al-Arfaj, Muhammad A., and Luyben, W. L., “Design and Control of an Olefin Metathesis Reactive Distillation Column,” Chem. Eng. Sci., 57, 5, 715-733,2002c.
[7] Al-Arfaj, Muhammad A., and Luyben, W. L., “Comparative Control Study of Ideal and Methyl Acetate Reactive Distillation,” Chem. Eng. Sci., 57, 24, 5039-5050, 2002d.
[8] Alejski, Krzsztof., and Duprat, Francoise., “Dynamic Simulation of the Multicomponent Reactive Distillation,” Chem. Eng. Sci., 51, 18, 4237-4252, 1996.
[9] Athawale, V., and Manjrekar, N., “Enzymatic Synthesis of the Acrylic Esters: A Comparative Study,” Journal of Molecular Catalysis B: Enzymatic, 10, 6, 551-554, 2000.
[10] Almeida-Rivera, C., and Grievink, J., “Feasibility of Equilibrium-Controlled Reaction Distillation Process: Application of Residue Curve Mapping” Compu. and Chem, 28, 17-25, 2004.
[11] Bisowarno, Budi H., Tian, Yu-Chu., and Tade, Moses O., “Model Gain Scheduling Control of an Ethyl tert-Butyl Ether Reactive Distillation Column,” Ind. Eng. Chem. Res., 42, 15, 3584-3591, 2003.
[12] Bisowarno, Budi H., Tian, Yu-Chu., Zhao, Futao., and Tade, Moses O., “Pattern-Based Predictive Control for ETBE Reactive Distillation,” J. Proc. Cont., 13, 1, 57-67, 2003.
[13] Bock, H., Wozny, G.., and Gutsche, B. “Design and Control of a Reaction Distillation Column Including the Recovery System,” Chem. Eng. and Proc., 36, 2, 101-109, 1997.
[14] Buzad, George., and Doherty, M. F., “Design of Three-Component Kinetically Controlled Reactive Distillation Columns Using Fixed-Point Methods,” Chem. Eng. Sci., 49, 12, 1947-1963, 1994.
[15] Buzad, George., and Doherty, M. F., “New Tools for the Design of Kinetically Controlled Reactive Distillation Columns for Ternary Mixtures,” Compu. and Chem., 395-408, 1995.
[16] Cao, W., Zhang, J., and Lu, Q., “New Type of Solid Acid Catalyst and Its Application to the Esterification of Acrylic Acid with Various Alcohols,” Shiyou Huagong Gaodeng Xuexiao Xuebao/Journal of Petrochemical Universities, 13, 1, 41-45, 2000.
[17] Chadda, N., Malone, M. F., and Doherty, M. F., “Feasible Products for Kinetically Controlled Reactive Distillation of Ternary Mixtures,” AIChE. Journal, 46, 5, 923-936, 2000.
[18] Chadda, N., Malone, M. F., and Doherty, M. F., “Feasibility and Synthesis of Hybrid Reactive Distillation Systems,” AIChE. Journal, 48, 12, 2754-2768, 2002.
[19] Chiang, Sheng-Feng, Kuo, Chien-Lin, Yu, Cheng-Ching, and Wong, David S. H., “Design Alternatives for the Amyl Acetate Process: Couples Reactor/Column and Reactive Distillation,” Ind. Eng. Chem. Res., 41, 13, 3233-3246, 2002.
[20] Chien, I-L., C. J. Wang, and D. S. H. Wong, “Dynamics and Control of a Hetergeneous Azeotropic Distillation Column: Conventional Control Approach,” Ind. Eng. Chem. Res., 38, 468 (1999)
[21] Dupont, P., Vedrine, J. C., Paumard, E., Hecquet, G., and Lefebvre, F., “Heteropolyacids Supported on Activated Carbon as Catalysis for the Esterification of Acrylic Acid by Butanol,” Applied Catalysis A: General, 129, 2, 217, 1995.
[22] Frey, T., and Stichlmair, J., “Reactive Azeotropes in Kinetically Controlled Reactive Distillation,” Chem. Eng. Res. and Des., Trans of the Ins. of Chem. Eng., Part A, 77, 7, 613-618, 1999.
[23] Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N., and Gani, R., “The Interactions of Design, Control and Operability in Reactive Distillation Systems,” Comput. and Chem. Eng., 26, 4, 735-746, 2002.
[24] Gruner, S., Mohl, K. D., Kienle, A., Gilles, E. D., Fernholz, G., and Friedrich, M., “Nonlinear Control of A Reactive Distillation Column,” Control Engineering Practice, 11, 8, 915-925, 2003.
[25] Hayden J. G. and J. P. O’Connell, “A Generalized Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Res., Dev., 14, 209 ,1975
[26] Jiménez, L., Wanhschafft, O. M., and Julka, V., “Analysis of Residue Curve Maps of Reactive and Extractive Distillation Units,” Comput. and Chem. Eng., 25, 635-642, 2001.
[27] Jiménez, L., and Costa-Lopez, J., “The Production of Butyl Acetate and Methanol via Reactive and Extrative Distillation. I. Chemical Equilibrium, Kinetics, and Mass-Transfer Issues,” Ind. Eng. Chem. Res., 41, 26, 6663-6669, 2002a.
[28] Jiménez, L., and Costa-Lopez, J., “The Production of Butyl Acetate and Methanol via Reactive and Extrative Distillation. II. Process Model, Dynamic Simulation, and Control Strategy,” Ind. Eng. Chem. Res., 41, 26, 6735-6744, 2002b.
[29] Kenig, E. Y., Bäder, H., Górak, A., Beßling, B., Adrian, T., and Shoenmakers, H., “Investigation of Ethyl Acetate Reactive Distillation Process,” Chem. Eng. Sci., 56, 6185-6193, 2001.
[30] Kumar, A., and Daoutidis, P., “Modeling, Analysis and Control of Ethylene Glycol Reactive Distillation Column,” AIChE. Journal, 45, 1, 51-68, 1999.
[31] Lee, J. W., Bruggemann, S., and Marquardt, W., “Shortcut Method for Kinetically Controlled Reactive Distillation Systems,“AIChE. Journal, 49, 6, 1471-1487, 2003.
[32] Liau, W.-R., Tang, M., Chen, Y.-P., “Densities and Viscosities of Butyl Acrylate+1-Butanol and Ethyl Laurate+1-Butanol at 293.15, 303.15, and 313.15 K,” J. of Chem. and Eng. Data, 43, 5, 826-829, 1998.
[33] Luyben, W. L., “Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation Systems,” Ind. Eng. Chem. Res., 39, 8, 2935-2946, 2000.
[34] Mahajani, S. M., and Kolah, A. K., “Some Design Aspects of Reactive Distillation Columns(RDC),” Ind. Eng. Chem. Res., 35, 12, 4587-4596, 1996.
[35] Mahajani, S. M., “Kinetic Azeotropy and Design of Reactive Distillation Columns,” Ind. Eng. Chem. Res., 38, 1, 177-186, 1999a.
[36] Mahajani, S. M., “Design of Reactive Distillation Columns for Multicomponent Kinetically Controlled Reactive Systems,” Chem. Eng. Sci., 54, 10, 1425-1430, 1999b.
[37] Melles, S., Grievink, J., and Schrans, Stany M., “Optimization of the Conceptual Design of Reactive Distillation Columns,” Chem. Eng. Sci., 55, 11, 2089-2097, 2000.
[38] Monroy-Loperena, R., Perez-Cisneros, E., and Alvarez-Ramirez, J., “Robust PI Control Configuration for A High-Purity Ethylene Glycol Reactive Distillation Column,” Chem. Eng. Sci., 55, 21, 4925-4937, 2000.
[39] Mohl, Klaus-Dieter, Kienle, A., Gilles, E., Rapumnd P., Sundmacher, K., and Hoffmann, U., “Steady-State Multiplicities in Reactive Distillation Columns for the Production of Fuel Ethers MTBE and TAME: Theoretical Analysis and Experimental Verification,” Chem. Eng. Sci., 54, 1029-1043, 1999.
[40] Noeres, C., Dadhe, K., Gesthuisen, R., Engell, S., and Górak, A., “Model-Based Design, Control and Optimisation of Catalytic Distillation Process,” Chem. Eng. Proc., 43, 421-434, 2004.
[41] Okasinski, Matthew J., and Doherty, M. F., “Thermodynamic Behavior of Reactive Azeotropes,” AIChE. Journal, 43, 9, 2227-2238, 1997.
[42] Okasinski, Matthew J., and Doherty, M. F., “Design Method for Kinetically Controlled, Staged Reactive Distillation Columns,” Ind. Eng. Chem. Res., 37, 7, 2821-2834, 1998.
[43] Okasinski, Matthew J., and Doherty, M. F., “Prediction of Heterogeneous Reactive Azeotropes in Esterification Systems,” Chem. Eng. Sci., 55, 5263-5271, 2000.
[44] Paludetto, R., Paret, G.., and Donati, G.., “Multicomponent Distillation with Chemical Reaction. Mathematical Model Analysis,” Chem. Eng. Sci., 47, 9, 2891-2896, 1992.
[45] Peng, Jianjun, Edgar, T. F., and Eldridge, R. Bruce, “Dynamic Rate-Based and Equilibrium Models for A Packed Reactive Distillation Column,” Chem. Eng. Sci., 58, 12, 2671-2680, 2003.
[46] Pham, Hoanh N., and Doherty, M. F., “Design and Synthesis of Heterogeneous Azeotropic Distillations-I. Heterogeneous Phase Diagrams,” Chem Eng. Sci., 45, 1823, 1990
[47] Pöpken, T., Steinigeweg, S., and Gmehling, J., “Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings: Experiments and Simulation,” Ind. Eng. Chem. Res., 40, 6, 1566-1574, 2001.
[48] Qi, Z., and Sundmacher, K., “Bifurcation Analysis of Reactive Distillation Systems with Liquid-Phase Splitting,” Comput and Chem. Eng., 26, 1459-1471, 2002a.
[49] Qi, Z., and Sundmacher, K., “Residue Curve Maps for Reactive Distillation Systems with Liquid-Phase Splitting,” Chem. Eng. Sci., 57, 163-178, 2002b.
[50] Rev, Endre, “Reactive Distillation and Kinetic Azeotropy,” Ind. Eng. Chem. Res., 33, 9, 2174-2179, 1994.
[51] Ryan, P. J. and Doherty, M. F., ”Design/Optimization of Ternary Heterogeneous Azeotropic Distillation Sequence,” AIChE. Journal, 35, 1592, 1989
[52] Schmitt, M., Hasse, H., Althaus, K., and Schoenmakers, H., “Synthesis of n-hexyl Acetate by Reactive Distillation,” Chem. Eng. Proc., 43, 397-409, 2004.
[53] Schwarzer, Stefan, and Hoffmann, Ulrich, “Experimental Reaction Equilibrium and Kinetics of the Liquid-Phase Butyl Acrylate Synthesis Applied to Reactive Distillation Simulation,” Chem. Eng. and Tech., 25, 10, 975-980, 2002.
[54] Seferlis, P., and Grievink, J., “Optimal Design and Sensitivity Analysis of Reactive Distillation Units Using Collocation Models,” Ind. Eng. Chem. Res., 40, 7, 1673-1685, 2001.
[55] Smejkal, Q., Haniks, J., and Kolena, J., “2-Methylpropylacetate Synthesis in a System of Equilibrium Reactor and Reactive Distillation Column,” Chem. Eng. Sci., 56, 365-370, 2001.
[56] Smejkal, Q., and Šoóš, M., “Comparison of Computer Simulation of Reactive Distillation Using ASPEN PLUS and HYSYS Software,” Chem. Eng. Proc., 41, 413-418, 2002.
[57] Sneesby, M. G.., Tade, Moses O., Datta, R., and Smith, T. N., “ETBE Synthesis Via Reactive Distillation. 2. Dynamic Simulation and Control Aspects,” Ind. Eng. Chem. Res., 36, 5, 1870-1881, 1997.
[58] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Steady-State Transitions in the Reactive Distillation of MTBE,” Comput and Chem. Eng., 22, 7-8, 879-892, 1998a.
[59] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Multiplicity and Pseudo-Multiplicity in MTBE and ETBE Reactive Distillation,” Chem. Eng. Res. and Des., Trans of the Ins. of Chem. Eng., Part A, 76, A4, 525-531, 1998b.
[60] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Two-Point Control of a Reactive Distillation Column for Composition and Conversion,” Journal of Process Control, 9, 1, 19-31, 1999.
[61] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Multi-Objective Control Scheme for an ETBE Reactive Distillation Column,’ Chem. Eng. Res. and Des., Trans of the Ins. of Chem. Eng., Part A, 78, A2, 283-293, 2000.
[62] Solokhin, A. V., Blagov, S. A., Serafimov, L. A., and Timofeev, V. S., “Open Evaporation Process Accompanied by Chemical Reaction in the Liquid Phase,” Theoretical Foundations of Chemical Engineering, 24, 103-109, 1990a.
[63] Solokhin, A. V., Blagov, S. A., Serafimov, L. A., and Timofeev, V. S., “Dynamic System for Open Evaporation Process in Presence of AB Chemical Reaction,” Theoretical Foundations of Chemical Engineering, 24, 377-382, 1990b.
[64] Song, Wei, Venimadhavan, G., Manning, J. M., Malone, M. F., and Doherty, M. F., “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis,” Ind. Eng. Chem. Res., 37, 5, 1917-1928, 1998.
[65] Taylor, R., and Krishna, R., “Modelling Reactive Distillation,” Chem. Eng. Sci., 55, 5183-5229, 2000.
[66] Thiel, C., Sundmacher, K., and Hoffmann, U., “Residue Curve Maps for Heterogeneously Catalysed Reactive Distillation of Fuel Ethers MTBE and TAME,” Chem. Eng. Sci., 52, 6, 993-1005, 1997.
[67] Thiel, C., Sundmacher, K., and Hoffmann, U., “Synthesis of ETBE: Residue Curve Maps for Heterogeneously Catalysed Reactive Distillation Process,” Chem. Eng. Jour., 66, 181-191, 1997.
[68] Tang, Y. T., Huang, H. P., and Chien I-Lung, “Design of a Complete Ethyl Acetate Reactive Distillation System,” Jour. Chem. Eng. Japan., 36, 11, 1352-1363, 2003.
[69] Ung, S., and Doherty, M. F., “Calculation of Residue Curve Maps for Mixture with Multiple Equilibrium Chemical Reactions,” Ind. Eng. Chem. Res., 34, 3195, 1995a.
[70] Ung, S., and Doherty, M. F., “Theory of Phase Equilibria in Multireaction Systems,” Chem. Eng. Sci., 50, 20, 3201-3216, 1995b.
[71] Ung, S., and Doherty, M. F., “Vapor-Liquid Phase Equilibrium in Systems with Multiple Chemical REactions,” Chem. Eng. Sci., 50, 23, 1995c.
[72] Ung, S., and Doherty, M. F., “Necessary and Sufficient Conditions for Reactive Azeotropes in Multireaction Mixtures,” AIChE. Journal, 40, 2382, 1995d.
[73] Venimadhavan, G., Buzad, G.., Doherty, M. F., and Malone, M. F., “Effect of Kinetics on Residue Curve Maps for Reactive Distillation,” AIChE. Journal, 40, 1814-1824, 1994.
[74] Wang, S. J., Wong, D. S. H., and Lee, E. K., “Effect of Interaction Multiplicity on Control System Design for a MTBE Reactive Distillation Column,” Journal of Process Control, 13, 6, 503-515, 2003a.
[75] Wang, S. J., Wong, D. S. H., and Lee, E. K., “Control of a Reactive Distillation Column in the Kinetic Regime for the Synthesis of n-Butyl-Acetate,” Ind. Eng. Chem. Res., 42, 5182-5194, 2003b.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔