(3.236.6.6) 您好!臺灣時間:2021/04/23 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:田心怡
論文名稱:含二元酸、水與離子熔液混合物的固液相平衡研究
論文名稱(外文):Solid-Liquid Equilibria for Mixtures Containing Diacids, Water, and Ionic Liquids
指導教授:李明哲李明哲引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:109
中文關鍵詞:Solid-Liquid EquilibriaIonic Liquids
相關次數:
  • 被引用被引用:3
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究的目的在於探討回收廢流物中之二元酸,而採用固體消失法來量測己二酸、戊二酸及琥珀酸分別與水及Emim ETSO4、 Bmim BF4 所組成之雙成份及三成份混合物的固液相平衡數據。實驗結果顯示,這些含二元酸之混合物並無複合物的產生,因此,均屬簡單共熔系統,且所配製的樣品得到之結晶多為二元酸。另外,本研究也量測Bmim BF4與水之液液相平衡數據。
雙成份系統的固液平衡數據,以NRTL模式關聯,並訂定最適化之模式參數值,再使用由雙成份固液相平衡數據訂定之參數,預測三成份系統的固液相邊界。計算結果顯示NRTL模式可準確描述各雙成份及三成份系統的固液相平衡行為。Bmim BF4與水之雙成份系統液液相平衡數據也用NRTL模式關聯,但關聯結果並不佳。
Abstract
The objective of this study is to recover diacids from waste stream. The solid-liquid equilibrium (SLE) data were measured with solid- disappearance method for various binary and ternary mixtures containing diacids, water, Emim ETSO4 , and Bmim BF4. The results showed that there were no complex formations in any of the mixtures and thus these mixtures behaved as simple eutectic systems. The liquid-liquid equilibrium (LLE) data were also measured for the mixtures of Bmim BF4 with water.
The binary SLE data were correlated with the NRTL model. The optimal values of the model parameters were determined. With the parameters obtained from binary mixture data, the models were then used to predict the properties of SLE for the ternary systems. The results showed that the NRTL model was capable of representing the SLE behavior of binary and ternary systems. The binary LLE data of Bmim BF4 + water were also correlated with the NRTL model. The calculated results were unsatisfactory.
目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖表索引 Ⅶ
第一章 緒論 1
1-1前言 1
1-2常溫離子熔液之特性與應用 1
1-3研究動機與目的 7
1-4本文各章重點 8
第二章 固液相平衡量測 9
2-1儀器設備 9
2-2 藥品 10
2-3 實驗設備配置說明 11
2-4 熔點量測步驟 12
2-4-1 雙成份樣品配製 13
2-4-2 三成份樣品配製 13
2-4-3 長晶技術之探討 14
2-4-4 熔點之量測 16
2-5 熔化熱之量測 17
2-6 液液平衡量測步驟 19
2-7 雙成分系統之固液相平衡量測結果 20
2-8 三成分系統之固液相平衡量測結果 23
2-9 雙成分系統之液液相平衡量測結果 24
第三章 固液相平衡理論計算 59
3-1 固液相平衡法則 59
3-2 雙成份系統之固液相平衡計算 60
3-3 三成份系統之固液相平衡預測 62
3-4 雙成份系統之液液相平衡計算 62
第四章 結論與建議 97
4-1 結論 97
4-2 建議 98
參考文獻 100
符號說明 107
參考文獻
Anthony, J. L., E. J. Maginn, and J. F. Brennecke, “Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water,” J. Phys. Chem. B, Vol. 105, pp. 10942-10949 (2001).
Anthony, J. L., E. J. Maginn, and J. F. Brennecke, “Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3- Methylimidazolium Hexafluorophosphate,” J. Phys. Chem. B., Vol. 106, pp. 7315-7320 (2002).
Blanchard, L. A. and J. F. Brennecke, “Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide,” Ind. Eng. Chem. Res., Vol. 40, pp. 287-292 (2001).
Blanchard, L. A., Z. Gu, and J. F. Brennecke, “Hight-Pressure Phase Behavior of Ionic Liquid/CO2 Systems,” J. Phys. Chem. B., Vol. 105, pp. 2437-2444 (2001).
Blanchard, L. A., D. Hancu, E. J. Beckman, and J. F. Brennecke, “Green Processing Using Ionic Liquids and CO2,” Nature, Vol. 399, pp. 28-29 (1999).
Chauvin, Y., L. Mussmann, and H. Olivier, “A Novel Class of Versatile Solvents for Two-Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation of Alkenes Catalyzed by Rhodium Complexes in Liquid 1,3-Dialkylimidazolium Salts,” Angew. Chem. Int. Ed. Engl., Vol. 34, pp. 2698-2700 (1995).
Deng, Y. and K. Qiao, “A Novel Reaction in Ionic Liquids: Selective Cyclization of 1-Dodecene to Cyclododecane under Moderate Pressure,” Tetrahedron Letters, Vol. 44, pp. 2191-2193 (2003).
Domañska, U. and E. Bogel-Lukasik, “Measurements and Correlation of the (Solid + Liquid) Equilibria of [1-Decyl-3-Methylimidazolium Chloride + Alcohols (C2-C12)],” Ind. Eng. Chem. Res., Vol. 42, pp. 6986-6992 (2003).
Domañska, U. and E. Bogel-Lukasik, “Solid-Liquid Equilibria for Systems Containing 1-Butyl-3-Methylimidazolium Chloride,” Fluid Phase Equilibria, Vol. 218, pp. 123-129 (2004).
Domañska, U., E. Bogel-Lukasik, and R. Bogel-Lukasik, “1-Octanol/Water Partition Coefficients of 1-Alkyl-3-Methylimidazolium Chloride,” Chem.Eur. J., Vol. 9, pp. 3033-3041 (2003).
Domañska, U., E. Bogel-Lukasik, and R. Bogel-Lukasik, “Solubility of 1-Dodecyl-3-Methylimidazolium Chloride in Alcohols (C2-C12),” J. Phys. Chem. B., Vol. 107, pp. 1858-1863 (2003).
Domañska, U. and A. Marciniak, “Solubility of 1-Alkyl-3-Methylimidazolium Hexafluorophosphate in Hydrocarbons,” J. Chem. Eng. Data, Vol. 48, pp. 451-456 (2003).
Domañska, U. and A. Marciniak, “Solubility of Ionic Liquid [emim][PF6] in Alcohols,” J. Phys. Chem. B., Vol. 108, pp. 2376-2382 (2004).
Dullius, J. E. L., P. A. Z. Suarez, S. Einloft, R. F. de Souza, and J. Dupont, “Selective Catalytic Hydrodimerization of 1,3-Butadiene by Palladium Compounds Dissolved in Ionic Liquids,” Organometallics, Vol. 17, pp. 815-819 (1998).
Fuller, J., R. T. Carlin, and R. A. Osteryoung, “The Room-Temperature Ionic Liquid 1-Ethyl-3- Methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties,” J. Electrochem. Soc., Vol. 144, pp. 3881-3886 (1997).
Gadiv Petrochemical Industries Ltd. (http://www.gadiv.com/ )
Germany Solvent Innovation GmbH (http:// www.solvent-innovation.de/ )
Holbrey, J. D., A.S. Larsen, F. S. Tham, and C. A. Reed, “Designing Ionic Liquid: Imidazolium Melts with Inert Carborane Anion,” J. Am. Chem. Soc., Vol. 122, pp. 7264-7272 (2000).
Huddleston, J. G., H. D. Willauer, R.P. Swatloski, A. E. Visser, and R. D. Rogers, “Room-Temperature Ionic Liquids as Novel Media for “Clean” Liquid-Liquid Extraction,” Chem. Commum., Vol. 16, pp. 1765-1766 (1998).
KDB-Hydrocarbons Properties, Pure Component Properties
(http:// www.infosys.korea.ac.kr/hdb/hcprop/ )
Lee, M. J. and P. C. Chi, “Solid-Liquid Equilibrium for Mixtures Containing Cresols, Piperazine, and Dibutyl Ether,” J. Chem. Eng. Data, Vol. 43, pp. 292-295 (1993).
Letcher, T. M. and N. Deenadayalu, “Ternary Liquid-Liquid Equilibria for Mixtures of 1-Methyl-3-Octylimidazolium Chloride + Benzene + an Alkane at T = 298.2 K and 1 atm,” J. Chem. Thermodynamics, Vol. 35, pp. 67-76 (2003).
Letcher, T. M., N. Deenadayalu, B. Soko, and D. Ramjugernath, “Ternary Liquid-Liquid Equilibria for Mixtures of 1-Methyl-3-Octylimidazolium Chloride + an Alkanol + an Alkane at T = 298.2 K and 1 bar,” J. Chem. Eng. Data, Vol. 48, pp. 904-907 (2003).
Marsh, K. N., C. T. Wu , A. V. Deev, and J. A. Boxall, “Liquid-Liquid Equilibria of Room-Temperature Ionic Liquids and Butan-1-ol,” J. Chem. Eng. Data, Vol. 48, pp. 486-491 (2003).
McKinley, M. D., M. S. Selvan, R. H. Dubois, and J. L. Atwood, “Liquid-Liquid Equilibria for Toluene + Heptane + 1-Ethyl-3- Methylimidazolium Triiodide and Toluene + Heptane + 1-Butyl-3- Methylimidazolium Triiodide,” J. Chem. Eng. Data, Vol. 45, pp. 841-845 (2000).
National Institute of Standards and Technology (NIST) Chemistry WebBook
(http://webbook.nist.gov/chemistry/ )
Ott, J. B. and J. R. Goates, “Phase Equilibria in Binary Mixtures Containing Benzene, a Cyclohexane, an n-Alkane, or Tetrachloromethane,” J. Chem. Thermodyn., Vol. 15, pp. 267-278 (1983).
Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 2rd ed.; Prentice-Hall Inc., Englewood Cliffs, N. J. (1986).
Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed.; Prentice-Hall Inc., Upper Saddle River, N. J. (1999).
Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures,” AIChE J., Vol. 14, pp. 135-144 (1968).
Scurto, A. M., S. N. V. K. Aki, and J. F. Brennecke, “Carbon Dioxide Induced Separation of Ionic Liquids and Water,” Chem. Commun., pp. 572-573 (2003).
Seddon, K. R., “Room-Temperature Ionic Liquids: Neoteric Solvents for Clean Catalysis,” Kinet. Catal., Vol. 37, pp. 693-697 (1996).
Seddon, K. R., A. Stark, and M. J. Torres, “Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids,” Pure Appl. Chem., Vol. 72, pp. 2275-2287 (2000).
Suarez, P. A. Z., J. E. L. Dullius, S. Einoft, R. F. de Souza, and J. Dupont, “The Use of New Ionic Liquids in Tow-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes,” Polyhedron, Vol. 15, pp. 1217-1219 (1996).
Swatloski, R. P., A. E. Visser, W. M. Reichert, G. A. Broker, L. M. Farina, J. D. Holbrey, and R. D. Rogers, “On the Solubilization of Water with Ethanol in Hydrophobic Hexafluorophosphate Ionic Liquids,” Green Chemistry, Vol. 4, pp. 81-87 (2002).
TRC Thermodynamics Tables: Non-Hydrocarbons. Thermodynamics Research Center, The Texas A&M University System, College Station, TX, Vol. VI, m (1993).
Wei, G. T., Z. Yang, and C. J. Chen, “Room Temperature Ionic Liquids as a Novel Medium for Liquid/Liquid Extraction of Metal Ions,” Analytica Chimica Acta, Vol. 488, pp. 183-192 (2003).
Wong, D. S. H., J. P. Chen, J. M. Chang, and C. H. Chou, “Phase Equilibria of Water and Ionic Liquids [Emim][PF6] and [Bmim][PF6],” Fluid Phase Equilibria, Vol. 194-197, pp. 1089-1095 (2002).
陳永富, 混合醇胺MEA/MDEA水溶液比熱量測及二氧化碳與混合醇胺水溶液之水溶液焓測量研究, 碩士論文, 中原大學化工所, 中壢 (1993)。
周毓賢, 沸點相近酚類衍生物與分離助劑混合物的固液相平衡研究, 碩士論文, 臺灣科技大學化工研究所, 台北 (2001).
翁子文, 分離沸點相近之2-甲氧基酚與1,2-二甲氧基苯混合物的固液相平衡研究, 碩士論文, 臺灣科技大學化工研究所, 台北 (2002).
洪櫻姿, 含離子熔液混合物的固液相平衡研究, 碩士論文, 臺灣科技大學化工研究所, 台北 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔