(3.235.41.241) 您好!臺灣時間:2021/04/11 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃帥凱
論文名稱:一氧化碳感測器改良之研究
論文名稱(外文):On the Improvement of Catalystic Type YSZ CO Sensor
指導教授:蕭敬業
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:111
中文關鍵詞:一氧化碳感測器固態電解質觸媒層
外文關鍵詞:CO SensorSolid State electrolyteCatalystic Layer
相關次數:
  • 被引用被引用:3
  • 點閱點閱:525
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究旨在使用各種不同的改良方法,如:改變觸媒層厚度、在感測器白金電極上網印不同濃度的YSZ 粉末、在YSZ中掺雜不同比例的金屬氧化物當固態電解質及改變固態電解質YSZ煅燒時間等,來改進CO感測的應答時間;另探討操作溫度及電位對於CO感測特性的影響。在觸媒層與電極特性研究上則採用SEM、XRD、ESCA、AC impedance等儀器來進行分析。
透過鑑定分析可知,白金電極,在長時間高溫下感測,會有聚集的現象,且表面的含量會減少;觸媒層在感測前CuO與ZnO特性峰的強度大於感測後;固態電解質以掺雜1wt% Sr其導氧率最好。
從CO感測特性結果可知,在感測器白金電極上網印不同濃度的YSZ 粉末方面,以網印0.5 YSZ粉末濃度的感測器,其應答時間最快;在YSZ中掺雜不同比例的金屬氧化物當固態電解質方面,以掺雜1wt% Sr當固態電解質,其應答時間最短,介於40~80(s)之間。
從操作溫度及操作電位對CO感測之特性結果得知,隨著操作溫度與操作電位增加,感度也隨之增加,當溫度從550℃提升到650℃時,感度由0.0005增加至0.0033μA/ppm CO;而當電位從-0.5V提升至-1V,感度由0.0011增加至0.0027μA/ppm CO。
Abstract
The purpose of this study intends to obtain a better catalytic type YSZ CO sensor with shorter response time. The improvement was achieved by the following methods including changing the thickness of catalyst layer, printing different concentrated YSZ powder on electrode , doping different metal oxide into YSZ and changing calcinations time for the solid state electrolyte. SEM,XRD,ESCA and AC impedance were employed to characterize the catalyst layer and electrode. The influences of operating temperature and applied potential on the sensing were also studied.
Based on the SEM, XRD and ESCA spectra, it was found that both Pt electrode and Cu/Zn catalyst layer were sintered after a long period operation. AC impedance analysis indicated that among all doing YSZ electrolyte the one doping with 1.0 wt% Sr gives the best oxygen ion conductivity.
CO sensing data reveal that the best CO sensor with shortest response time(40-80 sec) is the one with printing 0.5 concentrated YSZ powder on electrode companying with doping 1.0 wt% Sr into YSZ.
The experimental results also indicate that the sensitivity of the sensor can be improved by raising operating temperature as well as applied potential. The sensitivity would be raised from 0.0005 to 0.0033 μA/ppm CO when the operating temperature increase from 550 to 650℃,and from 0.0011 to 0.0027μA/ppm CO as applied potential increased from -0.5 to -1.0V.
目錄
摘要…………………………………………………………………………..Ⅰ
英文摘要……………………………………………………………………...Ⅱ
目錄……………………………………………………………..……………Ⅲ
圖目錄………………………………………………………………………..Ⅵ
……………………………..………Ⅴ
表目錄………………………………………………………………………..Ⅹ
符號說明…………………………………………………………………XI
第一章 序論…………………………………………………………………..1
第二章 文獻回顧……………………………………………………….…...4
2-1氣體感測器種類………………………………………………………...4
2-1-1 觸媒燃燒型氣體感測器…………………………………………...4
………………………………………9
2-1-2 金屬氧化物半導體氣體感測器……………………………………5
2-1-3 場效電晶體型感測器……………………………………………..7
2-1-4 電化學固態電解質型感測器………………………………………8
………………………………….21
2-1-5 電化學固態高分子電解質型感測器……………………………..10
…………………………………….23
2-2 電化學YSZ固態電解質型一氧化碳感測器…………………………12
2-2-1 電位式YSZ固態電解質型一氧化碳感測器…………………….12
………………………………………….28
2-2-1-1 有觸媒層……………………………………………………..13
……………………………………………….32
2-2-1-2 無觸媒層………………………………………………………15
2-2-2 電流式YSZ固態電解質型一氧化碳感測器……………………17
2-2-3 極限電流式YSZ固態電解質型一氧化碳感測器………………18
2-2-3-1 有觸媒層………………………………………………………18
2-2-3-2 無媒層…………………………………………………………20
2-3 電極材料……………………………………………………………….22
2-3-1 貴金屬電極………………………………………………………..22
2-3-2 貴金屬合金電極…………………………………………………..22
2-3-3 離子電子混合導體電極…………………………………………..24
2-3-4 氧化物電極………………………………………………………..25
2-4 固態電解質改質法…………………………………………………….29
第三章 實驗方法與步驟……………………………………………………33
3-1儀器設備………………………………………………………………..33
3-2實驗藥品………………………………………………………………..34
3-3 氣體感測裝置………………………………………………………….36
3-4 感測元件的製備……………………………………………………….40
3-4-1 製備觸媒…………………………………………………………..40媒……………………………………………………………...
3-4-1-1 製備無電鍍銅觸媒……………………………………………40
3-4-1-2 以含浸法添加助觸媒………………………………………..42
3-4-2 製備YSZ電解質片………………………………………………43
3-4-3 製備電極…………………………………………………………..44
3-4-4 製備觸媒層與感測元件的完成…………………………………..47
3-5電極與觸媒的特性鑑定與分析.………………………………48
3-5-1雷克斯光粉末繞射儀(XRD)…………………………………….48
3-5-2 化學分析影像能譜儀(ESCA)…………………………………...49
3-5-3掃描式電子顯微鏡(SEM)………………………………………..50
3-5-4 交流阻抗分析(AC impedance)……………………………….52
3-6 氣體感測特性之研究………………………………………………….55
3-6-1 極化曲線…………………………………………………………55
3-6-2 氣體感測示意圖…………………………………………………55
第四章 結果與討論…………………………………………………………57
4-1 電極與觸媒的鑑定…………………………………………………….57
4-1-1 掃描式電子顯微鏡(SEM)……………………………………57
4-1-2 X-Ray 繞射分析(XRD)………………………………………62
4-1-3 化學電子能譜分析儀(ESCA)………………………………..66
4-1-4 交流阻抗分析(AC impedance)……………………………….68
4-2 極化曲線……………………………………………………………….70
4-3 Pt/YSZ/Pt/CuO-γ-Al2O3感測元件系統………………………………...72
4-3-1 觸媒層重量的不同對CO感測之影……………………………...72響……………………………..
4-3-2 在白金上網印不同克數的YSZ 對CO感測之影響……………76
4-3-3 固態電解質(YSZ)掺雜不同氧化金屬對CO感測影響………81
4-3-4 操作溫度對CO感測之影響………………………………….......93
4-3-5 操作電位對CO感測之影響……………………………………...97
4-3-6 固態電解質煅燒時間對CO感測之影響…………………………101
第五章 結論…………………………………………………………………105
參考文獻……………………………………………………………………..107
參考文獻
Azad, A. M.; Akbar, S. A.; Mhaisalkar, S. G.; Birkefeld, L. D.; Goto, K. S., ”Solid-state gas sensors: A review“, J. Electrochem. Soc., v139, n12, 3690-3704, (1992).
Can, Z. Y.; Narita, H.; Mizusaki, J.; Tagawa, H., ”Detection if carbon monoxide by using zirconia oxygen sensor”, Solid State Ionics, 79, 344-348, (1995).
Devi, G. S.; Manorama, S. V.; Rao, V. J., ”SnO2/BiO3:A Suitable Syatem for Selective Carbon Monoxide Detection”, J. Electrochem. Soc., v145, n3, 1039, (1998).
Eguchi, K., ”Ceramic materials containing rare earth oxide for solid fuel cell”, Journal of Alloys and Compounds , 250, 486-491, (1997).
Fergus, J. W., ”The application of solid fluoride electrolytes in chemical sensors”, Sensors and Actuators B, n42, 119-130, (1997).
Fernandez, J. A., “Development of an oxygen sensor for molten 44.5% lead-55.5% bismuth alloy“, Journal of Nuclear Materials, 301, 47-52, (2002).
Gao, Y.; Kita, H.; Watanabe, Y.; Sima, K., ”An electrochemical Nafion matrix oxygen sensors and the evaluation of oxygen permeation in coated films”, Journal of Applied Electrochemistry, 23, 1101-1106, (1993).
Garzon, F. H.; Mukundan, R.; Brosha, E. L., ”Solid-state mixed potential gas : theory, experiments and challenges”, Solid State Ionics, 136-137, 633-638, (2000).
Gopel, W.; Reinhardt, G.; Rosch, M., ”Trends in the development of solid state amperometric and potentiometric high temperature sensors”, Solid State Ionics, 136-137, 519-531, (2000).
Hibino, T.; Inoue, T.; Mitsuru, S., ”Electrochemical reduction of NO by alternation current electrolysis using yttria-stabilized zirconia as the solid electrolyte part II. Modification of Pd electrode by coating with Rh”, Solid State Ionics, 130, 31-39, (2000).
Hwang, B. J.; Liu, Y.C.; Hsu, W. C., ”Nafion-based solid-state gas sensors: pt/Nafion electrodes prepared by an impregnation-reduction method in sensing oxygen”, Journal of solid state Electrochemistry, v2, n6, 378-385, (1998).
Ji, Y.; Liu, J.; Lu, Z.; Zhao, X.; He, T.; Su, W., ”Study on the properties of Al2O3-doped(ZrO2)0.92(Y2O3)0.08 electrolyte”, Solid State Ionics, 126, 277-283, (1999).
Jung, S. J.; Yanagida, H., ”The characterization of a CuO/ZnO heterocontact-type gas sensor having selsctivity for CO gas”, Sensors and Actuators B, 37, 55-60, (1996).
Kim, J. H.; Choi, G. M., ”Mixed ionic and electronic conductiVity of
[(ZrO2)0.92(Y2O3)0.08]1-y•(MnO1.5)y”, Solid State Ionics, 130, 157-168,
(2000).
Kim, S.; Yang, Y. L.; Jacobson, A. J.; Abeles, B., ”Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation”, Solid State Ionics, 106,
189-195, (1998).
Kuroda, K.; Hashimoto, I.; Adachi, K., ”Characterizatio of solid oxide fuel cell using doped lanthanum gallate”, Solid State Ionics, 132, 199-208 (2000).
Lee, J. H.; Kwon, C. S.; Kim, H.; Kim, B. K.; ”Limiting current and wide range air/fuel ratio sensors using the same YSZ-Al2O3 layers as electrolyte and diffusion barrier”, Sensors and Actuators B, 35-36, 278-284, (1996).
Li, N.; Tan, T. C.; Zeng, H. C., ”High-Temperature Carbon Monoxide Potentiometric Sensor“, J. Electrochem. Soc., v4, n4, (1993).
Lu, G.; Miura, N.; Yamazoe, N., ”High-temperature hydrogen sensor based on stabilizes zirconia and metal oxide electrode”, Sensors and Actuators B, 35-36, 130-135, (1996).
Maffei, N.; Kuriakose, A. K., “Solid oxide fuel cells of ceria doped with gadolinium and praseodymium“, Solid State Ionics, 107, 67-71, (1998).
Maffei, N.; Silveira, G. d., “Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC element“, Solid State Ionics, 159, 209-216, (2003).
Maric, R.; Ohara, S.; Fukui, T.; Inagaki, T.; Fujita, J. I., ” High-performance Ni-SDC cermet for Solid Oxide Fuel Cells at Medium Operating Temperature”, Electrochemical and Solid-State Letters, 1(5), 201-203, (1998).
Miura, N.; Lu, G.; Yamazoe, N., ”Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases”, Solid States Ionics , 136-137, 533-542, (2000).
Miura, N.; Raisen, T.; Lu, G.; Yamazoe, N., ”Highly selective CO sensor using stabilized zirconia and a couple of oxide electrode”, Sensors and Actuators B , 47, 84-91, (1998).
Mochizuki, K.; Sorita, R.; Takashima, H., “Sensing characteristic of zirconia based CO sensor made by thick-film lamination“, Sensors and Actuators B, 77, 190-195, (2001).
Morita, M.; Niwa, O.; Tou, S.; Watanabe, N., ”Nickel content dependence of electrochemical behavior of carbohydrates on a titanium nickel alloy electrode and its application to a liquid chromatography detector”, Journal of chromatography A, 837, 17-24, (1999).
Ono, M.; Shimanoe, K.; Miura, N.; Yamazoe, N., ”Amperometric sensor based on nasicon and NO oxidation catalysts for detection of total NOx in atmospheric environment”, Solid State Ionics, v136-137, 583-588, (2000).
Ramesh, K. V.; Shukla, A. K., ”Carbon-based electrodes carrying platinum-group bimetal catalysts for oxygen reduction in fuel cells with acidic or alkaline electrolytes”, Solid State and Structural Chemistry Unit, 210-215, (1986).
Skinner, S. J.; Kilner, J. A., ”Oxygen ion conductors”, Materials Today, 30-37, (2003).
Skelton, D. C.; Tobin, R. G.; Lambert, D. K.; DiMaggio, C. L.; Fisher, G. B., ”A surface-science-based model for the selectivity of platinum-gold alloy electrodes in Zirconia-based NOx sensors”, Sensors and Actuators B, v96, 46-52, (2003).
Sorita, R.; Kawano, T., ”A highly selective CO sensor :screening of electrode materials”, Sensors and Actuators B, 35-36, 274-277, (1996).
Tan, Y.; Tan, T. C., “An amperometric carbon monoxide sensor based on the steady state difference response technique“, Sensors and Actuators B, 28,113-121, (1995).
Tan, Y.; Tan, T. C., ”Mathematical Modeling of a Solid-State Limiting Current Carbon Monoxide Sensor”, AICHE Journal, v42, n3, 876, (1996).
Wu, R. J.; Hu, C. H.; Yeh, C.T.; Su, P. G., ”Nanogold on powdered cobalt oxide for carbon monoxide Sensor”, Sensors and Actuations B, 96, 596-601, (2003).
Yamaura, H.; Tamaki, J.; Moriya, K.; Miura, N.; Yamazoe, N., ”Selective CO Detection by Using Indium Oxide-Based Semiconductor Gas Sensor “, J. Electrochem. Soc., v143, n2, L36, (1996).
Yoon, J. W.; Grilli, M. L.; Bartolomeo, E. D., ”The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes”, Sensors and Actuators B, 76, 483-488, (2001).
Zhu, B.; Liu, X.; Sun, M.; Ji, S.; Sun, J., “Calcium doped ceria-based materials for cost-effective intermediate temperature solid oxide fuel cells“, Solid State Sciences, 5, 1127-1134, (2003).
陳一誠 “金屬氧化物半導體型氣體感測器”,材料與社會,第68期,p62, (1992)。
蔡嬪嬪、曾明漢 “氣體感測器之簡介、應用及市場”,材料與社會
,第68期,p50,(1992)。
曾明漢 “ 觸媒燃燒型氣體感測器 ”,材料與社會,第68期,p60,(1992)。
顧志鴻,” MOSFET 氣體感測器” ,材料與社會,第68期,p71, (1992)。
鄭銘堯,”YSZ電解質一氧化碳感測器之研究”,碩士論文,國立台灣科技大學, (2000)。
潘國芳,”銅鈰觸媒分別添加氧化杉、氧化釔、氧化鑭行一氧化碳氧化反應之研究”,碩士論文,國立台灣科技大學, (2002)。
許登富,”銅觸媒層一氧化碳感測器之製備與應用”,碩士論文,國立台灣科技大學, (2002)。
張琨揮,”取代型金屬花青薄膜之電流式氣體感測器研究”,碩士論文,國立台灣科技大學, (2002)。
洪文通,”應用Pt/Nafion電極研究電流式二氧化氮氣體感測器”,博士論文,國立台灣大學, (2003)。
吳任,”助觸媒對銅觸媒層一氧化碳感測器感測行為之影響”,碩士論文,國立台灣科技大學, (2003)。
謝孟儒,”鑭鉬氧化物作為固態氧化物燃料電池電極之製備與材料之特性”,碩士論文,國立台灣科技大學, (2004)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔