|
[1] Y. Akahori, T. Ohyama, T. Yamada, K. Katoh, T. Ito, “High-speed photoreceivers using solder bumps and microstrip lines formed on a silicon optical bench,” IEEE Photon. Technol. Lett., vol. 11, pp. 454-456, 1999. [2] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, and P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett., vol. 35, pp. 977-978, 1999. [3] H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett., vol. 39, pp. 212-213, 2003. [4] A. Yariv, Introduction to Optical Electronics, 2nd ed. New York Holt, Rinehart and Winston, 1976. [5] S. L. Lee, D. S. L. Mui, and L. A. Coldren, “Explicit formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol., vol. 12, pp. 2073-2079, 1994. [6] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995. [7] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, pp. 416-418, 1973. [8] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett., vol. 27, pp. 337-339, 1975. [9] R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer., vol. 68, pp. 583-592, 1978. [10] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in NN multimode interference couplers including phase relations,” Appl. Opt., vol. 33, pp. 3905-3911, 1994. [11] R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “Waveguide beam splitters and recombiners based on multimode propagation phenomena,” Opt. Lett., vol. 17, pp. 991-993, 1992. [12] R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena,” Opt. Commun., vol. 110, pp. 410-424, 1994. [13] T. Hashimoto, T. Kurosaki, M. Yanagisawa, Y. Suzuki, Y. Akahori, Y. Inoue, Y. Tohmori, K. Kato, Y. Yamada, N. Ishihara, and K. Kato, “A 1.3/1.55-μm wavelength-division multiplexing optical module using a planar lightwave circuit for full duplex operation,” J. Lightwave Technol., vol. 18, pp. 1541-1547, 2000. [14] K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett., vol. 30, pp. 856-857, 1994. [15] H. Sasaki, E. Shki, and N. Mikoshiba, “Propagation characteristics of optical guided wave in asymmetric branching waveguides,” IEEE J. Quantum Electron., vol. QE-17, pp. 1051-1058, 1981. [16] C. Kostrzewa, and K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach-Zehnder sections,” IEEE Photon. Technol. Lett., vol. 7, pp. 902-904, 1995. [17] B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett., vol. 11, pp. 575-577, 1999. [18] K. D. Schock, F. E. Prins, S. Strahle, and D. P. Kern, “Resist process for low-energy elecron-beam lithography,” J. Vac. Sci. Technol. B 15, p.2323, 1997. [19] K. O. Hill, and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol., vol. 15, pp. 1263-1276, 1997. [20] Y. Shibata, S. Oku, Y. Kondo, T. Tamamura and M. Naganuma, “Semiconductor monolithic add-drop multiplexer using a grating switch integrated with coupler structure,” Electron. Lett., vol. 35, pp. 489-491, 1999. [21] T. Augustsson, “Bragg grating-assisted MMI-coupler for add-drop multiplexing,” J. Lightwave Technol., vol. 16, pp. 1517-1522, 1998. [22] G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Furst, H. Ehlers, and R. Steingruber, “Multichannel 1.3m/1.55m AWG multiplexer/ demultiplexer for WDM-PONs,” Electron. Lett., vol. 34, pp. 263-264, 1998. [23] Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with -50 dB crosstalk over 100 nm bandwidth,” Electron. Lett., vol. 31, pp. 2100-2101, 1995. [24] U. Hilbk, M. Burmeister, B. Hoen, T. H. Hermes, J. Saniter, and F. J. Westphal, “Selective OTDR measurements at the central office of individual fiber links in a PON,” Proc. OFC’97, Paper TUK.3, 1997. [25] D. B. Mortimore, “Wavelength-flattened fused couplers,” Electron. Lett., vol. 21, pp. 742-743, 1985. [26] J. V. Wright, “Wavelength dependence of fused coupler,” Electron. Lett., vol. 22, pp. 320-321, 1986. [27] K. Okamoto, “Theoretical investigation of light coupling phenomena in wavelength-flattened couplers,” J. Lightwave Technol., vol. 8, pp. 678-683, 1990. [28] M. Zirngibl, C. Dragone, C. H. Joyner, M. Kuznetsov, and U. Koren, “Efficient 116 optical power splitter based on InP,” Electron. Lett., vol. 28, pp. 1212-1213, 1992. [29] S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, A. Napoleone, and W. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1 N power splitters,” IEEE Photon. Technol. Lett., vol. 12 , pp. 974-976, 2000. [30] H. Sasaki, E. Shki, and N. Mikoshiba, “Propagation characteristics of optical guided wave in asymmetric branching waveguides,” IEEE J. Quantum Electron., vol. QE-17, pp. 1051-1058, 1981. [31] M. Belanger, G. L. Yip, and M. Haruna, “Passive planar multibranch optical power divider: Some design considerations,” Appl. Opt., vol. 22, pp. 2283-2289, 1983. [32] M. Haruna and J. Koyama, “Electrooptic branching waveguide-switch and the application to 1 4 optical switching network,” J. Lightwave Technol., vol. LT1-1, pp. 233-247, 1983. [33] R. Baets and P. E. Lagasse, “Calculation of radiation loss in integrated-optic tapers and Y-junctions,” Appl. Opt., vol. 21, pp. 1972-1978, 1982. [34] O. Mikami and S. Zembutsu, “Coupling-length adjustment for an optical direction coupler as a 2 2 switch,” Appl. Phys. Lett., vol. 35, pp. 38-40, 1979. [35] H. A. Haus and C. G. Fonstad, “Three waveguide couplers for improved sampling and filtering,” IEEE J. Quantum Electron., vol. QE-17, pp. 2321-2325, 1981. [36] M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol., vol. 17, pp. 243-248, 1999. [37] H. Yanagawa, S. Nakamura, I. Ohyama, and K. Ueki, “Broad-band high-silica optical waveguide star coupler with asymmetric directional couplers,” J. Lightwave Technol., vol. 8, pp. 1292-1297, 1990. [38] A. Takagi, K. Jinguji, and M. Kawachi, “Silica-based waveguide-type wavelength-insensitive couplers (WINC’s) with series-tapered coupling structure,” J. Lightwave Technol., vol. 10, pp. 1814-1824, 1992. [39] A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron., vol. 28, pp. 848-855, 1992. [40] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995. [41] K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55m wavelength division multiplexer based on multimode interference,” Electron. Lett., vol. 32, pp. 1259-1261, 1996. [42] Y.-J. Lin and S.-L. Lee, “InP-based 1.3/1.55m wavelength demultiplexer with multimode interference and chirped grating,” Opt. and Quantum Electron., vol. 34, pp. 1201-1212, 2002. [43] Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett., vol. 12, pp. 492-494, 2000. [44] Y. Gottesman, E. V. K. Rao, and B. Dagens, “A novel design proposal to minimize reflections in deep-ridge multimode interference couplers,” IEEE Photon. Technol. Lett., vol. 12, pp. 1662-1664, 2000. [45] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in NN multimode interference couplers including phase relations,” Appl. Opt., vol. 33, pp. 3905-3911, 1994. [46] E. R. Thoen, L. A. Molter, and J. P. Donnelly, “Exact modal analysis and optimization of NN1 cascaded waveguide structures with multimode guiding sections,” IEEE J. Quantum Electron., vol. 33, pp. 1299-1307, 1997. [47] H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett., vol. 39, pp. 212-213, 2003. [48] M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems,” IEEE Photon. Technol. Lett., vol. 9, pp. 1238-1240, 1997. [49] Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, and N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol., vol. 13, pp. 1728-1735, 1995. [50] H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder interferometers,” J. Lightwave Technol., vol. 12, pp. 64-67, 1994. [51] Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photon. Technol. Lett., vol. 4, pp. 36-38, 1992. [52] M.-H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, and S. K. Park, “Polymeric electrooptic 22 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer,” IEEE J. Select. Topics Quantum Electron., vol.7, no. 5, pp. 812-818, 2001. [53] U. Hilbk, M. Burmeister, B. Hoen, T. H. Hermes, J. Saniter, and F. J. Westphal, “Selective OTDR measurements at the central office of individual fiber links in a PON,” Proc. OFC’97, Paper TUK.3, 1997. [54] B. H. Verbeek, G. H. Henry, and N. A. Olsson, “Integrated four-channel Mach-Zehnder Multi/Demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol., vol. 6, pp. 1011-1015, 1988. [55] L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett., vol. 14, pp. 702-704, 2002. [56] Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, and N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol., vol. 13, pp. 1728-1735, 1995. [57] B. H. Verbeek, G. H. Henry, and N. A. Olsson, “Integrated four-channel Mach-Zehnder Multi/Demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol., vol. 6, 1011-1015, 1988. [58] M. Kuznetsov, “Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol., vol. 12, 226-230, 1994. [59] H. H. Yaffe, C. H. Henry, M. R. Serbin, and L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol., vol. 12, 1010-1014, 1994. [60] C. Kostrzewa, and K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach-Zehnder sections,” IEEE Photon. Technol. Lett., vol. 7, pp. 902-904, 1995. [61] B. J. Offrein, G. L. Bona, F. Horst, H. W. M. salemink, R. Beyeler, and R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett., vol. 11, pp. 239-241, 1999. [62] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, and P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett., vol. 35, pp. 977-978, 1999. [63] D. Ortega, R. M. De La Rue, and J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol., vol. 16, pp. 284-290, 1998. [64] R. Scarmozzino and R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A., vol. 8, pp. 724-731, 1991. [65] P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, pp. 940-942, 1997. [66] J. Aarnio, P. Heimala, M. D. Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett., vol. 27, pp. 2317-2318, 1991. [67] K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol., vol. 13, pp. 73-82, 1995. [68] Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata and T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” OFC 2002 Technical Digest., pp. 75-76, 2002. [69] K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol., vol. 18, pp. 252-259, 2000. [70] M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol., vol. 17, pp. 243-248, 1999. [71] User guide of FimmWave program, version 3.4, Photon Design, 2001. http://www.photond.com [72] R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, “1.31-1.55-m phase-array demultiplexer on InP,” IEEE Photon. Technol. Lett., vol. 8, pp. 638-640, 1996. [73] M. Kawachi, “Recent progress in silica-based planar lightwave circuits on silicon,” IEE Proc.-Optoelectron., Vol. 143, pp. 257-262, 1996. [74] M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electronics, vol. 22, pp. 391-416, 1990. [75] M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol., vol. 12, pp. 625-633, 1994. [76] Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 22 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett., vol. 10, pp. 681-683, 1998.
|