(3.230.143.40) 您好!臺灣時間:2021/04/21 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳輝勝
研究生(外文):Chen Huai-Shenq
論文名稱:利用表面光電壓光譜及光激發螢光光譜研究砷化銦/砷化鎵多層堆疊自組成量子點之特性
論文名稱(外文):Surface photovoltage spectroscopy and photoluminescence study of stacked self-assembled InAs/GaAs quantum dots
指導教授:黃鶯聲
指導教授(外文):Huang Ying-Sheng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:1
中文關鍵詞:砷化銦量子點自組成量子點量子侷限效應史傅斯基-克拉斯諾夫長晶模式表面光電光譜光激發螢光光譜間隔層厚度壓縮應力
外文關鍵詞:InAs quantum dotsself-assembled quantum dotsquantum confinement effectStranski-Krastanov growth modesurface photovoltage spectroscopyphotoluminescence spectroscopyspacer layer thicknesscompressive stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
我們利用表面光電壓光譜(SPS)和光激發螢光光譜(PL)來研究以分子束磊晶法(MBE)成長於(100)平面砷化鎵之基板上的四個不同間隔層厚度的30個堆疊層的砷化銦/砷化鎵自組成量子點,其砷化鎵的間隔層厚度分別為10nm、15nm、20nm和30nm。由表面光電壓光譜(SPS)中,我們可以觀察到來自於量子點和濕層的訊號,其主要是樣品吸收光後所產生的載子再經由界面電場分離成電子、電洞後就分別往樣品的頂部和底部的方向移動所產生出的訊號。籍由表面光電壓光譜(SPS)和光激發螢光光譜(PL)量測,我們可以觀察到隨著間隔層厚度由30nm減少至10nm時,量子點的訊號會有很明顯的藍位移(blue shift)現象。然而從光激發螢光光譜(PL)中,我們也可以發現到間隔層厚度為30nm的砷化銦量子點與只有單一層砷化銦量子點的參考樣品所量測到的訊號非常相似。我們認為量子點訊號的藍移現象主要是與砷化銦量子點在砷化鎵裡形成時,所造成的應力效應有關。在間隔層厚度為30nm的樣品中,總應力的鬆弛效應所造成的量子點成核現象,其是不受到第一層量子點的影響。此研究可以證明表面光電壓光譜(SPS)和光激發螢光光譜(PL)在非接觸和非破壞性檢測技術領域中具有相當的應用潛力。
We present a systematic study of four 30-layer stacks of molecular beam epitaxially grown self-assembled InAs quantum dots (QDs)with GaAs spacer layer thickness of 10,15,20, and 30nm, respectively, using surface photovoltage spectroscopy(SPS)and photoluminescence(PL).The SPS signals, observed from all the relevant portions of the samples including the QDs and wetting layer, originated from the spatial separation of photogenerated carriers and their subsequent movement to the top and bottom sides of the samples under the surface electric field. Both the SPS and PL measurements show a systematic increasing blue shift of the QD related signals with spacer thickness varying from 30nm to 10nm,while the PL spectrum for 30nm spacer looks very similar to that of a reference sample with only one InAs dot layer. The blue shift of the QD related signals has been attributed to the strain-induced effects on the formation of InAs QDs in GaAs and in the case of 30nm spacer layer sample,total strain relief causes the QD nucleation without any influence of the first dot layer. This study demonstrates the considerable potential of SPS and PL for the contactless and nondestructive characterization of QDs structures.
中文摘要------------------------------------------------------Ⅰ
英文摘要------------------------------------------------------Ⅲ
誌 謝------------------------------------------------------Ⅴ
目 錄------------------------------------------------------Ⅵ
圖 索 引------------------------------------------------------Ⅷ
表 索 引------------------------------------------------------XI
第一章 緒論----------------------------------------------------1
1.1 量子點發展史簡介----------------------------------------1
1.2 低維度半導體及其元件應用的優點-----------------------------3
第二章 量子點的特性介紹及樣品結構-----------------------------10
2.1 量子點的形成機制及特性簡介--------------------------------10
2.2 砷化銦量子點雷射研究現況及動機----------------------------14
2.3 砷化銦量子點結構介紹--------------------------------------15
2.4 研究主題--------------------------------------------------16
第三章 實驗原理及方法-----------------------------------------22
3.1 表面光電壓光譜量測(SPS)---------------------------------22
3.1.1表面光電壓實驗原理---------------------------------------22
3.1.2 SPV實驗方法與實驗系統-----------------------------------22
3.2 光激發螢光光譜量測(PL)----------------------------------24
3.2.1 光激發螢光(PL) 實驗原理---------------------------------24
3.2.2 PL實驗方法與實驗系統------------------------------------25
第四章 結果與討論---------------------------------------------29
4.1 表面光電壓光譜量測(SPS)分析-----------------------------29
4.1.1 隨溫度變化之表面光電壓量測------------------------------31
4.2 室溫與隨溫度變化之光激發螢光光譜量測(PL)分析------------32
4.2.1室溫下之光激發螢光光譜量測(PL)分析---------------------32
4.2.2 隨溫度變化之光激發螢光光譜量測(PL)分析----------------34
4.2.3 利用不同波長的激發源雷射來探討不同深度量子點的特性------35
4.3 基態和激發態在不同雷射功率中的變化情形--------------------37
第五章 結論---------------------------------------------------70
參考文獻------------------------------------------------------72
作者簡介------------------------------------------------------80
1. Arakawa, Y. and H. Sakaki, “Multidimensional Quantum Well Laser and Temperature Dependence of its Threshold Current,” Appl. Phys. Lett., Vol.40, No.11, pp.939-941(1982).
2. 綦振瀛、葉念慈, 「砷化銦量子點與量子點雷射」, 物理雙月刊, 第廿十三卷, 第六期, 第652〜660頁, 民國九十年。
3. Asada, M., Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers, ” IEEE J. Quantum Electron. QE-22, Vol.22, No.9, pp.1915-1921(1986).
4. Marzin, J. Y., J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, “Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs,” Phys. Rev. Lett., Vol.73, No.5, pp.716-719(1994).
5. Grundman, M., J. Christen, N. N. Ledenstov, J. Bohrer, D. Bimbery, S. S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinor, A. Y. Zgorou, A. E. Zhukov, P. S. Kop'ev, and Zh.I. Alferov, “Ultranarrow Luminescence Lines from Single Quantum Dots,” Phys. Rev. Lett., Vol.74, No.20, pp.4043-4046(1995).
6. Bour, D. P. and J. R. Shely, “High-power(1.4W)AlGaInP Graded-Index Separate Confinement Heterostructure Visible(λ~658nm)Laser,” Appl. Phys. Lett., Vol.51, No.21, pp.1658-1660(1987).
7. Roentqen, P., W. Heuberqer, G. L. Bona, and P. Unqer, “MOVPE of AlGaInP/GaInP Heterostructures for Visible Lasers,” J. Cryst. Growth, Vol.107,Nos.1-4, pp.724-730(1991).
8. Keen, S. J., G. T. Maker, and A. I. Ferquson, “Mode-Locking of Diode Laser-Pumped Nd:YAG Laser at 1.3μm,” Electron. Lett., Vol.25, No.8, pp.490-491 (1989) .
9. Maker, G. T. and A. I. Ferquson, “Frequency Modulation Mode-Locking and Q-Switching of Diode-Laser-Pumped Nd:YLF Laser,” Electron. Lett., Vol.25, No.16, pp.1025-1026(1989).
10.Chaly, V. P. and D. M. Demidov, “Use of Molecular Beam Expitaxy for High-Power AlGaAs Lasers Production,” J. Cryst. Growth, Vol.150 part2, pp.1350-1353(1995).
11.Li, Y., O. Voskoboynikov, C. P. Lee, S. M. Sze, and O. Tretyak,” Electron Energy State Dependent on the Shape and Size of Semiconductor Quantum Dots,” J. Appl. Phys.,Vol.90, No.12, pp.6416-6416 (2001) .
12.Efros, Al. L. and V. N Prigodin., “Enhancement of Photoluminescence Quantum Efficiency in Semiconductor Structures with Reduced Dimensionality,” Appl. Phys. Lett., Vol.62, No.23, pp.3013-3015(1993).
13.Zhou, W. D., O. Qasaimeh, J. Phillips, S. Krishna, and P. Bhattacharya, “Bias-Controlled Wavelength Switching in Coupled-Cavity In0.4Ga0.6As/GaAs Self-Organized Quantum Dot Lasers,” Appl. Phys. Lett., Vol.74, No.6, pp.783-785 (1999)
14.Imamura, K., Y. Sugiyama, Y. Nakata, S. Mutol, and N. Yokoyama, “New Optical Memory Structure Using Self-Assembled InAs Quantum Dots, ” Jpn. J. Appl. Phys. Part2, Vol.34, No.11A, pp.L1445-L1447 (1995) .
15.Kaus, M. and N. Kobayashi,“Equilibrium Multiatomic Step Structure of GaAs(001) Vicinal Surfaces Grown by Metalorganic Chemical Vapor Deposition, ”Appl. Phys. Lett., Vol.62, No.11, pp.1262-1264(1993).
16.Liu, D. C. and C. P. Lee,“Novel Fabrication Technique Towards Quantum Dots,”Appl. Phys. Lett., Vol.63, No.25, pp.3503-3505(1993).
17.Nagamune, Y., M. Nishioka, S. Tsukamoto, and Y. Arakawa,“GaAs Quantum Dots with Lateral Dimension of 25 nm Fabricated by Selective metalorganic Chemical Vapor Deposition Growth, ” Appl. Phys. Lett., Vol.64, No.19, pp.2495-2497(1994).
18.Naqamune, Y., M. Nishioka, S. Tsukamoto, and Y. Arakawa,“Optical Properties of GaAs Quantum Dots Fabricated by MOCVD Selective Growth,”Solid-State Electron., Vol.37, Nos.4-6, pp.579-581(1994).
19.Inokuma, T., T. Arai, and M. Ishikawa,“Size Effects on the Temporal Dynamicsof Edge Emission in CdSe Microcrystals Embedded in a Germanate Glass Matrix, ” phys. Rev. B, Vol.42, No.17, pp.11093-11098(1990).
20.Markichev, I., E. Sheka, I. Natkaniec, A. Muzychka, V. Khavryutchenko, Y. Wang, and N. Herron,“Density of Vibrational States of Thiol Capped CdS particles.Inelastic Neutron Scattering, ”Phys. B:Condensed Matter, Vol.198, Nos.1-3, pp.197-199 (1994) .
21.Wang, Y. and N. Herron,“Nanometer-Size Semiconductor Clusters. Materals Synthesis, Quantum Size Effects, and Photophysical properties,” J. Phys. Chem., Vo95, No.2, pp.525-525(1991).
22.Kayanuma, Y. and K. kuroda,“Quantum Size Effect of Excitonic Molecules in CuCl microcrystals,”Appl. Phys. A:Solids and Surfaces, Vol.53, No.6, pp.475-479 (1991) .
23.Marzin, J. Y., J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard,“Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs,”Phys. Rev. Lett., Vol.73, No.5, pp.716-719(1994).
24.Qianghua, X., A. Konkar, A. Kalburge, T. R. Ramachandran, P. Chen, R. Cartland, A. Madhukar, H. T. Lin, and D. H. Rich,“Structural and Optical Behavior of Strained InAs Quantum Boxes Grown on Planar and Patterned GaAs (100) Substrates by Molecular-Beam Epitaxy,”J. Vac. Sci. Techol. B, Vol.13, No.2, pp.642-645(1995).
25.Leonard, D., M. Krishnamurthy, C. M. Reaves, S. P. Denbaar, and P. M. Petroff,“Direct Formation of Quantum-Sized Dots from Uniform Coherent Islands of InGaAs on GaAs Surfaces,”Appl. Phys. Lett., Vol.63, No.23, pp.3203-3205(1993).
26.Heinrichsdorff, F., A. Krost, M. Grundmann, D. Bimberg, A. Kosogov, and P. Werner, “Self-Organization Processes of InGaAs/GaAs Quantum Dots Grown by Metalorganic Chemical Vapor Deposition,”Appl. Phys. Lett., Vol.68, No.23, pp.3284-3286(1996).
27.Bennett, B. R., R. Magno, and B. V. Shanabrook, “Molecular Beam Epitaxial Growth of InSb, GaSb, and AlSb Nanometer-Scale Dots on GaAs,”Appl. Phys. Lett., Vol.68, No.4, pp.505-507(1996).
28.Seifert, W., A. Carlsson, A. Petersson, L. E. Wernersson, and L. Samuelson,“Alignment of InP Stranski—Krastanow Dots by Growth on Patterned GaAs/GaInP Surfaces,”Appl. Phys. Lett., Vol.68, No.12, pp.1684-1686(1996).
29.Fafard, S., Z. Wasilewski, J. Mccaffrey, S. Raymond, and S. Charbonneau,“InAs Self-Assembled Quantum Dots on InP by Molecular Beam Epitaxy,”Appl. Phys. Lett., Vol.68, No.7, pp.991-993(1996).
30.Groenen, J., A. Mlayah, R. Carles, A. Ponchet, A. L. Corre, and S. Salaun, “Strain in InAs Islands Grown on InP(001) Analyzed by Raman Spectroscopy,”Appl. Phys. Lett., Vol.69, No.7, pp.943-945(1996).
31.詹國禎, 「砷化銦量子點的光電性質」, 物理雙月刊, 第廿十五卷, 第三期, 第383〜389頁, 民國九十二年。
32.Maxmov, M. V., L. V. Asryan, Y. M. Shernyakov, A. F. Tsatulinikov, I. N. Kaiauder, V. V. Nikolaev, A. R. Kovsh, S. S. Mikkin, V. M. Zhukov, Z. I. Alferov, N. N. Ledenstov, and D. Bimberg,“Gain and Threshold Characteristics of Long Wavelength Lasers Based on Inas/GaAs Quantum Dots Formed by Activated Alloy Phase Separation,”IEEE J. Sel. Top. Quantum Electron, Vol.37, No.5, pp.676-683(2001).
33.Shapira, Y., L. J. Brillson, and A. Heller, “Origin of Surface and Metal-Induced Interface States in InP,”Phys. Rev. B, Vol.29, No.12, pp.6824-6832(1984).
34.Bachrach-Ashkenasy, N., N. L. Kronik, Y. Rosenwaks, M. C. Hanna, M. Leibovitch, and P. Ram,“Surface Photovoltage Spectroscopy of Quantum Wells and Superlattices,”Appl. Phys. Lett., Vol.68, No.7, pp.879-891(1996).
35.Aigoui, L., F. H. Pollak, T. J. Petruzello, and K. Shahzad,“Observation of Excitonic Feature in ZnSe/ZnMgSSe Multiple Quantum Wells by Normalized Kelvin Probe Spectroscopy at Low Temperatures,”Solid State Comm., Vol.102, No.12, pp.877-882(1997).
36.Mishori, B., M. Leibovitch, Y. Shapira, F. H. Pollak, D. C. Streit, and M. Woitowicz,“Surface Photovoltage Spectroscopy of a GaAs/AlGaAs Heterojunction Bipolar Transistor,”Appl. Phys. Lett., Vol.73, No.5, pp.650-652(1998).
37.Ashkenasy, N., M. Leibovitch, Y. Shapira, F. H. Pollak, T. Burnham and X. Wang,“Surface Photovoltage Spectroscopy of an InGaAs/GaAs/AlGaAs Single Quantum Well Laser Structure,”J. Appl. Phys., Vol.83, No.2, pp.1146-1149(1998).
38.Cardona, M., Modulation Spectroscopy, in Solid State physics, suppl. 11, edited by F. Seitz, D. Turnbull, and H. Ehrenreich,(Academic press, New York), pp.105-112(1969).
39.Lorrain, P., and D. R. Corson, Electromagnetic Fields and Waves, JWANG YUAN publishing Co., pp.508-511(1972).
40.Moore, K. J., G. Duggan, K. Woodbridge, and C. Roberts,“Observations and Calculations of the Exciton Binding Energy in(In,Ga)As/GaAs Strained-Quantum-Well Heterostructures,” Phys. Rev. B, Vol.41, No.2, pp.1090-1094(1990).
41.Shen, H., M. Dutta, and R. Lux,“Dynamics of Photoreflectance from Undoped GaAs,”Appl. Phys. Lett., Vol.59, No.3, pp.321-323(1991).
42.Schmidt, K. H., G. Medeiros-Ribeiro, J. Garcia, and P. M. Petroff,“Size Quantization Effects in InAs Self-Assembled Quantum Dots,”Appl. Phys. Lett., V0l.70, No.13, pp.1727-1729 (1997) .
43.Sun, B. Q., Z. D. Lu, D. S. Jiang, J. Q. Wu, Z. Y. Xu, Y. Q. Wang, J. N. Wang, and W. K. Ge,“Photovoltage and Photoreflectance Spectroscopy of InAs/GaAs Self-Organized Quantum Dots,”Appl. Phys. Lett. Vol.73, pp.2657-2659 (1998) .
44.Chu, L., M. Arzberger, G. Bohm, and G. Abstreiter,“Influence of Growth Conditions on the Photoluminescence of Self-Assembled InAs/GaAs Quantum Dots,”J. Appl. Phys., Vol.85, No.4, pp.2355-2362 (1999) .
45.Le Ru, E. C., A. J. Bennett, C. Roberts, and R. Murray, ”Strain and Electronic Interactions in InAs/GaAs Quantum Qot Multilayers for 1300 nm Emission,”J. Appl. Phys., Vol.91, No.3, pp.1365-1370 (2002) .
46.Le Ru, E. C., P. Howe, T. S. Jones, and R. Murray,“Strain-Engineered InAs/GaAs Quantum Dots for Long-Wavelength Emission,”Phys. Rev. B, Vol.67, No.15, pp.165303(1)-165303(5) (2003) .
47.Heidemeyer, H., S. Kiravittaya, C. Muller, N. Y. Jin-Phillipp, and O. G. Schmidt,“Closely Stacked InAs/GaAs Quantum Dots Grown at Low Growth Rate,”Appl. Phys. Lett., Vol.80, No.9, pp.1544-1546 (2002) .
48.Lipinsik, M. O., H. Schuler, O. G. Schmidt, and K. Eberl,“Strain-Induced Material Intermixing of InAs Quantum Dots in GaAs,” Appl. Phys. Lett. Vol.77, No.12, pp.1789-1791 (2000) .
49.Schmidt, O. G. and K. Eberl,“Multiple Layers of Self-Asssembled Ge/Si Islands: Photoluminescence, Strain Fields, Material Interdiffusion, and Island Formation,”Phys. Rev. B, Vol.61, No.20, pp.13721-13729 (2000) .
50.Joyce, P. B., E. C. Le Ru, T. J. Krzyzewski, G. R. Bell. R. Murray, and T. S. Jones,“Optical Properties of Bilayer InAs/GaAs Quantum Dot Structures:Influence of Strain and Surface Morphology,”Phys. Rev. B., Vol.66, No.7, pp.075316(1)-075316(8) (2002) .
51.Chen, J. X., A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdrs, and M. llegems,“Tuning InAs/GaAs Quantum Dot Properties under Stranski-Krastanov Growth Mode for 1.3 µm Applications,”J. Appl. Phys., Vol.91, No.10, pp.6710-6716 (2002) .
52.Lautenschlarge, P., M. Garrige, and S. Logothetidis,“Interband Critical Points of GaAs and their Temperature Dependence,”Phys. Rev. B, Vol. 35, No.17, pp.9174-9189 (1987) .
53.Shen, H., S. H. Pan, Z. Hang, J. Leng, and F. Pollak, “Photoreflectance of GaAs and Ga0.82Al0.18As at Elevated Temperatures up to 600 ℃,”Appl. Phys. Lett., Vol.53, No.12, pp.1080-1082 (1988) .
54.Eiichi ADACHI,“Energy Band Parameters of InAs at Various Temperatures,”J. Phys. Soc. Jpn., Vol.24, No.13, pp.1178-1181 (1968) .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔