(3.238.174.50) 您好!臺灣時間:2021/04/11 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭宇竣
研究生(外文):Yu-Jung Cheng
論文名稱:布拉格光纖光柵的極化模態色散效應
論文名稱(外文):Polarization Mode Dispersion Effect of a Fiber Bragg Grating
指導教授:譚昌文
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:91
中文關鍵詞:極化模態光柵極化模態色散模態色散布拉格
外文關鍵詞:PMDpolarization mode dispersionFBGfiber gratingfiber bragg grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:444
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
此論文提出的理論為利用向量耦合理論去求得了解光纖光柵的極化模態特性。當輸入光源經過一個光纖光柵時,三維空間的麥克斯威爾(Maxwell equation)向量波方程式可以完整的描述光在光柵傳輸的現象。光柵為紫外光干涉照射所製程,能把光散色而產生穿透及反射光也都能被描述。在解出波方程式得到的電場後,史塔克參數(Stokes parameter)及瓊斯矩陣(Jones matrix)皆能獲得。再利用這些參數就能很容易去獲得差分群速延遲(differential group delay) ,至此極化模態效應能被觀察了解。最後再以實驗去印證之。
The polarization mode dispersion (PMD) effect of a Fiber Bragg Grating (FBG) is observed by using a full vectorial coupled mode theory approximate approach. Starting from the vectorial wave equation, the light propagation through a fiber Bragg grating can be properly discussed. The light inside a fiber Bragg grating is scattered by the grating which is formed by UV-induced grating change. Both the transitive and refractive light is observed. By solving the wave equations, the amplitudes of the scattered light of different polarization, hence the stoke parameters and Jones matrices of light can be properly found. From the Jones matrices we can properly find the differential group delay and the PMD. A set of experiment data is provided to check the validity.
摘要 i
Abstract ii
誌謝 iii
List of Figure iv
Chapter 1 1
Introduction 1
1.1 Overview …1
1.2 Basic of Fiber Bragg Grating 2
1.2.1 Characteristics of Photosensitivity 3
1.2.2 Fundamental Properties of Gratings 5
1.3 Organization of the Thesis 7
Chapter 2 8
Photo induced refractive index change 8
2.1 The Lorentz-Lorenz Formula 9
2.2 The Particle Displacement and Strain 13
2.3 Concepts of Photoelastic Effect 19
2.4 Calculation of the change in index 21
Chapter 3 26
Concepts of Dielectric Waveguides 26
3.1 Basic of Dielectric Waveguides 26
3.1.1 Symmetric Slab Dielectric Waveguide 26
3.1.2 Asymmetric Slab Dielectric Waveguide 28
3.2 Weakly Guiding Optical Fibers 30
3.2.1 Introduction……………. 30
3.2.2 Guided Modes of the Optical Fibers 31
Chapter 4 38
Basic Principles and Measurements of Polarization Mode Dispersion 38
4.1 Introduction of Polarization Mode Dispersion 38
4.1.1 Polarization Concepts….. 39
4.1.2 Polarization Mode Dispersion 41
4.2 Jones Calculus 43
4.3 Stokes Vectors 47
4.4 Measurement Methods 49
4.4.1 The Fixed Analyzer Technique 49
4.4.2 The Poincare arc Method 53
4.4.3 The Jones Matrix Eigenanalysis Method 54
Chapter 5 57
General Formalism 57
5.1 Introduction 57
5.2 Maxwell’s Equations 58
5.3 Description of Couple Mode Theory 59
5.4 Derivation of PMD 64
Chapter 6 66
Numerical and Experiment Results 66
6.1 Numerical Results 66
6.2 Experiment Results 72
6.3 Discussions 78
Chapter 7 85
Conclusion 85
7.1 Summary 85
7.2 Future Research 86
Bibliography 87
Biographical Data 91
[1] C. D. Poole and J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, Eds. New York: Academic, 1997, vol. III A
[2] H. Sunnerud, “Polarization-Mode Dispersion in Optical Fibers: Characterization, Transnission Impairments and Compensation,” Department of Microelectronics, Photonics Laboratory, Chalmbers University of Technology SE-412 96 , Sweden.
[3] K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol., Vol. 15, No. 8, pp.1263-1276, August 1997.
[4] M. Schiano and G.. Zaffiro, “Polarization Mode Dispersion in Chirp Fiber Gratings,” ECOC”98, 20-24 September 1998, Madrid, Spain, pp.403-404.
[5] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguide: Application to reflection filter fabrication,” Appl. Phys. Lett., Vol. 32, pp. 647-649, 1978.
[6] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett., Vol. 3, pp. 66-68, 1978.
[7] T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys., Vol. 76, pp. 73-80, 1944.
[8] M. J. Digonnet, ”A Kramers-Kronig analysis of the absoption change in fiber gratings,” Proc. SPIE 2841, pp. 109-120, 1996.
[9] L. Dong, J. L. Archambault, L. Reekie, P. St. Russell, and D. N. Payne, “Photoinduced absorption change in germanisilicate performs: evidence for the color centre model of photosensitivity,” Appl. Opt. Vol.34, pp. 3436-3440, 1995.
[10] D. Wong, S. B. Poole, and M. G. Sceats, “Stress-birefringence reduction in elliptical-core fibers under ultraviolet irradiation,” Opt. Lett. Vol. 17, pp. 1773-1775, 1992.
[11] B. Poumellec, P. Niay, M. Douay, and J. F. Bayon, “The UV induced refractive index grating in Ge : SiO2 preforms: Additional CW experiments and the macroscopic origin of the change in index,” J. Phys. D: Appl. Phys., vol. 29, pp.1842—1856, 1996.
[12] M. Born and E. Wolf, Principles of Optics, 6th ed. New York: Pergamon, pp.88-87, 1983.
[13] B. A. Auld, Acoustic Fields and Waves in Solids, Vol.1, John Wiley & Sons, pp 1-11.
[14] A. Yariv, P. Yeh Optical Waves in Crystals, John Wiley, New York,1984. pp.318-327.
[15] M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong,J. F. Bayon, H. Poignant, and E. Delevaque “Densification Involved in the UV-Based Photosensitivity of Silica Glasses and Optical Fibers,” J. of Lightwave Technol., Vol. 15, No. 8, pp1329-42, 1997.
[16] F. Kherbouche and B. Poumellec, “UV-induced stress field during Bragg grating inscription in optical fibers,” J. Opt. A: Pure and Applied optics, 3, 2001.
[17] H. A. Haus, Waves and Field in Optoelectronics, Prentice-Hall, Inc., 1984, pp.235-243.
[18] D. Marcuse, Theory of Dielectric Waveguides, 2nded. Harcourt Brace Jovanovich, Publisher, Academic Press Inc. 1991, pp 60-96.
[19] D. K. Cheng, Field and Wave Electromagnetic, 2nded. Addison-Wesley, Publishing Company, Inc. 1992.
[20] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol., vol. 9, pp. 1439—1456, 1991.
[21] J. Zhou and M. J. O’Mahoney. “Optical transmission system penalties due to fiber polarization mode dispersion,” IEEE Photon. Technol. Lett., vol.6, pp 1265—1267, 1994.
[22] C.D.Poole and J.Nagel, “Polarization effects in lightwave systems”, Chapter 6, Optical Fiber Telecommunication Vol. III A, edited by I.P.Kaminow and T.L.Koch, Academic Press, 1997.
[23] R. C. Jones, “A new calculus for the treatment of optical systems I,” J. Opt. Soc. Am, vol. 31, pp. 488—503, 1941.
[24] C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol., vol. 12, pp. 917—929, 1994.
[25] D. Andresciani, F. Curti, F. Matera and B. Daino, “Measurement of the group-delay difference between the principal states of polarization in a low birefringence terrestrial fiber cable,” Opt. Lett., vol. 12, pp. 844—846, 1987.
[26] C. D. Poole, N. S. Bergano, R. E. Wagner and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, pp. 1185—1190, 1988.
[27] B. L. Heffner, “Automated measurement of polarization-mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett., vol. 4, pp. 1066—1069, 1992.
[28] B. L. Heffner, “Accurate automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett., vol. 5, pp. 814—817, 1993.
[29] C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett., vol. 22, pp. 1029—1030, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔