(3.238.174.50) 您好！臺灣時間：2021/04/11 12:58

### 詳目顯示:::

:

• 被引用:0
• 點閱:444
• 評分:
• 下載:26
• 書目收藏:0
 此論文提出的理論為利用向量耦合理論去求得了解光纖光柵的極化模態特性。當輸入光源經過一個光纖光柵時，三維空間的麥克斯威爾(Maxwell equation)向量波方程式可以完整的描述光在光柵傳輸的現象。光柵為紫外光干涉照射所製程，能把光散色而產生穿透及反射光也都能被描述。在解出波方程式得到的電場後，史塔克參數(Stokes parameter)及瓊斯矩陣(Jones matrix)皆能獲得。再利用這些參數就能很容易去獲得差分群速延遲(differential group delay) ，至此極化模態效應能被觀察了解。最後再以實驗去印證之。
 The polarization mode dispersion (PMD) effect of a Fiber Bragg Grating (FBG) is observed by using a full vectorial coupled mode theory approximate approach. Starting from the vectorial wave equation, the light propagation through a fiber Bragg grating can be properly discussed. The light inside a fiber Bragg grating is scattered by the grating which is formed by UV-induced grating change. Both the transitive and refractive light is observed. By solving the wave equations, the amplitudes of the scattered light of different polarization, hence the stoke parameters and Jones matrices of light can be properly found. From the Jones matrices we can properly find the differential group delay and the PMD. A set of experiment data is provided to check the validity.
 摘要 i Abstract ii 誌謝 iii List of Figure iv Chapter 1 1 Introduction 1 1.1 Overview …1 1.2 Basic of Fiber Bragg Grating 2 1.2.1 Characteristics of Photosensitivity 3 1.2.2 Fundamental Properties of Gratings 5 1.3 Organization of the Thesis 7 Chapter 2 8 Photo induced refractive index change 8 2.1 The Lorentz-Lorenz Formula 9 2.2 The Particle Displacement and Strain 13 2.3 Concepts of Photoelastic Effect 19 2.4 Calculation of the change in index 21 Chapter 3 26 Concepts of Dielectric Waveguides 26 3.1 Basic of Dielectric Waveguides 26 3.1.1 Symmetric Slab Dielectric Waveguide 26 3.1.2 Asymmetric Slab Dielectric Waveguide 28 3.2 Weakly Guiding Optical Fibers 30 3.2.1 Introduction……………. 30 3.2.2 Guided Modes of the Optical Fibers 31 Chapter 4 38 Basic Principles and Measurements of Polarization Mode Dispersion 38 4.1 Introduction of Polarization Mode Dispersion 38 4.1.1 Polarization Concepts….. 39 4.1.2 Polarization Mode Dispersion 41 4.2 Jones Calculus 43 4.3 Stokes Vectors 47 4.4 Measurement Methods 49 4.4.1 The Fixed Analyzer Technique 49 4.4.2 The Poincare arc Method 53 4.4.3 The Jones Matrix Eigenanalysis Method 54 Chapter 5 57 General Formalism 57 5.1 Introduction 57 5.2 Maxwell’s Equations 58 5.3 Description of Couple Mode Theory 59 5.4 Derivation of PMD 64 Chapter 6 66 Numerical and Experiment Results 66 6.1 Numerical Results 66 6.2 Experiment Results 72 6.3 Discussions 78 Chapter 7 85 Conclusion 85 7.1 Summary 85 7.2 Future Research 86 Bibliography 87 Biographical Data 91
 [1] C. D. Poole and J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, Eds. New York: Academic, 1997, vol. III A[2] H. Sunnerud, “Polarization-Mode Dispersion in Optical Fibers: Characterization, Transnission Impairments and Compensation,” Department of Microelectronics, Photonics Laboratory, Chalmbers University of Technology SE-412 96 , Sweden.[3] K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol., Vol. 15, No. 8, pp.1263-1276, August 1997.[4] M. Schiano and G.. Zaffiro, “Polarization Mode Dispersion in Chirp Fiber Gratings,” ECOC”98, 20-24 September 1998, Madrid, Spain, pp.403-404.[5] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguide: Application to reflection filter fabrication,” Appl. Phys. Lett., Vol. 32, pp. 647-649, 1978.[6] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett., Vol. 3, pp. 66-68, 1978.[7] T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys., Vol. 76, pp. 73-80, 1944.[8] M. J. Digonnet, ”A Kramers-Kronig analysis of the absoption change in fiber gratings,” Proc. SPIE 2841, pp. 109-120, 1996.[9] L. Dong, J. L. Archambault, L. Reekie, P. St. Russell, and D. N. Payne, “Photoinduced absorption change in germanisilicate performs: evidence for the color centre model of photosensitivity,” Appl. Opt. Vol.34, pp. 3436-3440, 1995.[10] D. Wong, S. B. Poole, and M. G. Sceats, “Stress-birefringence reduction in elliptical-core fibers under ultraviolet irradiation,” Opt. Lett. Vol. 17, pp. 1773-1775, 1992.[11] B. Poumellec, P. Niay, M. Douay, and J. F. Bayon, “The UV induced refractive index grating in Ge : SiO2 preforms: Additional CW experiments and the macroscopic origin of the change in index,” J. Phys. D: Appl. Phys., vol. 29, pp.1842—1856, 1996.[12] M. Born and E. Wolf, Principles of Optics, 6th ed. New York: Pergamon, pp.88-87, 1983.[13] B. A. Auld, Acoustic Fields and Waves in Solids, Vol.1, John Wiley & Sons, pp 1-11.[14] A. Yariv, P. Yeh Optical Waves in Crystals, John Wiley, New York,1984. pp.318-327.[15] M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong,J. F. Bayon, H. Poignant, and E. Delevaque “Densification Involved in the UV-Based Photosensitivity of Silica Glasses and Optical Fibers,” J. of Lightwave Technol., Vol. 15, No. 8, pp1329-42, 1997.[16] F. Kherbouche and B. Poumellec, “UV-induced stress field during Bragg grating inscription in optical fibers,” J. Opt. A: Pure and Applied optics, 3, 2001.[17] H. A. Haus, Waves and Field in Optoelectronics, Prentice-Hall, Inc., 1984, pp.235-243.[18] D. Marcuse, Theory of Dielectric Waveguides, 2nded. Harcourt Brace Jovanovich, Publisher, Academic Press Inc. 1991, pp 60-96.[19] D. K. Cheng, Field and Wave Electromagnetic, 2nded. Addison-Wesley, Publishing Company, Inc. 1992.[20] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol., vol. 9, pp. 1439—1456, 1991.[21] J. Zhou and M. J. O’Mahoney. “Optical transmission system penalties due to fiber polarization mode dispersion,” IEEE Photon. Technol. Lett., vol.6, pp 1265—1267, 1994.[22] C.D.Poole and J.Nagel, “Polarization effects in lightwave systems”, Chapter 6, Optical Fiber Telecommunication Vol. III A, edited by I.P.Kaminow and T.L.Koch, Academic Press, 1997.[23] R. C. Jones, “A new calculus for the treatment of optical systems I,” J. Opt. Soc. Am, vol. 31, pp. 488—503, 1941.[24] C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol., vol. 12, pp. 917—929, 1994.[25] D. Andresciani, F. Curti, F. Matera and B. Daino, “Measurement of the group-delay difference between the principal states of polarization in a low birefringence terrestrial fiber cable,” Opt. Lett., vol. 12, pp. 844—846, 1987.[26] C. D. Poole, N. S. Bergano, R. E. Wagner and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, pp. 1185—1190, 1988.[27] B. L. Heffner, “Automated measurement of polarization-mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett., vol. 4, pp. 1066—1069, 1992.[28] B. L. Heffner, “Accurate automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett., vol. 5, pp. 814—817, 1993.[29] C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett., vol. 22, pp. 1029—1030, 1986.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 長波段波長可調光纖雷射之參數優化及研製 2 光纖土石流震動監測系統之研發 3 偏極化模態色散於摻鉺光纖放大器中之理論與實驗分析 4 光纖光柵競爭分析暨其應用之研究 5 電光調變器系統受偏極化模態色散影響之誤碼率評估 6 運用演化演算法設計光纖光柵之研究 7 以光纖光柵為基礎的光塞取多工器之研究 8 偏極化色散於可調式聲光濾波器中之理論與實驗分析 9 布雷格光柵在光纖分碼多工系統中消除多重擷取干擾效應之探討

 無相關期刊

 1 新型布拉格光纖光柵振動感測器之研製 2 偏極化模態色散於摻鉺光纖放大器中之理論與實驗分析 3 光纖通訊傳輸系統中偏極化模態色散的量測與補償 4 複合材料法溫度補償光纖光柵壓力感測器之研究 5 波長可調光纖光柵之研製與應用 6 布拉格光纖光柵振動感測器設計 7 以布拉格光纖光柵感測器同時量測彎曲曲率與軸向應力 8 應用布拉格光纖光柵於增益平坦化濾波器之設計與分析 9 光纖傳輸系統中偏極化色散的量測和補償 10 液晶光子晶體光纖之雙折射與色散性 11 布拉格光纖光柵側面拋光之研究 12 光纖光柵感測器於鋪面材料之溫度與應變量測之研究 13 光纖光柵讀取系統軟體之研發 14 光纖光柵量測系統之研發 15 黏貼式光纖光柵頻譜特性之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室