(3.230.76.48) 您好!臺灣時間:2021/04/11 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡林憲
研究生(外文):Lin-Chuan Tsai
論文名稱:使用耦合、串接、並接微帶線及Z-轉換技術合成濾波器
論文名稱(外文):Filters Synthesis Using Equal-length Coupled-Serial-Shunted Lines and Z-transform Technique
指導教授:徐敬文
指導教授(外文):Ching-Wen Hsue
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:84
中文關鍵詞:雙頻帶濾波器微帶線Z 轉換帶拒濾波器寬帶帶通濾波器微波微分器
外文關鍵詞:dual-band filtermicrostrip linesZ domainband-stop filterwide-band band-pass filtermicrowave differentiator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究平行對稱耦合微帶線及平行非對稱耦合微帶線的特性在Z轉換中如何應用在微波濾波器。新結構頻帶線由低通平行耦合、非對稱平行耦合、串接、並接微帶線組成,用來設計雙頻帶濾波器、帶拒濾波器及低通濾波器。此外,一個簡單轉移函數被使用在一階及二階微分器表示離散時間無限脈衝響應。以轉移函數離散時間濾波器零點位置,根據每個元件的特性我們可以決定傳輸線網路。
首先,我們討論一個雙頻帶濾波器,使用合成方法在微波頻帶設計及實現數位雙頻帶濾波器,其由帶拒及寬帶帶通濾波器串接而成。寬帶帶通濾波器由5階契比雪夫II型帶通濾波器使用串接及並接所構成,帶拒濾波器由4階巴特渥斯所設計,使用耦合、串接、並接微帶線組成。雙頻帶濾波器每一通帶頻寬由帶通及帶拒濾波器所控制。
再者,一個Z轉換非對稱平行耦合線的公式具有一零點在z=-1,其可以使用於窄頻帶帶拒濾波器。非對稱平行耦合線的串接散射參數藉由每一埠電壓及電流得到。此一表示式可提供額外兩個變數彈性設計濾波器,使用最佳化演算法調整非對稱平行耦合線特性阻抗讓微帶線的轉移函數儘可能接近理想濾波器的系統函數。
最後,實現一個寬帶微分器,使用一個修正雙線性轉換設計微波頻段一階及二階微分器。實驗結果證明,微分器轉移函數適合於製作微帶線結構寬帶微波微分器。
In this thesis, we investigate the characteristics of symmetric parallel coupled lines (PCLs) and asymmetric parallel coupled lines (APCLs) by a new formulation expressing in the Z domain. New configurations of microstrip lines consists of low-pass PCLs and APCLs, serial lines and shunt stubs are employed to design dual-band, band-stop and low-pass filters. Besides, a simple transfer function is employed to represent discrete-time infinite impulse response (IIR) processes of both first-order and second-order differentiators. Based on the zero locations of the transfer function of discrete-time filters, we can configure transmission-line network according to the characteristics of each element.
We first discuss a dual-band filter employing a wide-band band-pass filter and a band-stop filter in a cascade connection. The wide-band band-pass filter is implemented by the five-order Chebyshev Type II band-pass filter, which uses serial lines and shunted stubs lines configuration. The band-stop filter is implemented by the four-order Butterworth band-stop filter, which uses coupled-serial-shunted lines structure. The bandwidth of each pass-band of the dual-band filter is controllable by adjusting the characteristics of both the band-pass filter and band-stop filter.
Furthermore, a new formulation of equal-length APCLs having zero at z=-1 ( ) is employed to study narrow-band band-stop filters. Each APCL provides four characteristic impedances of even and odd modes, which increase addition flexibility in the optimization process. Experimental results show that APCLs filters can provide narrow-band band-stop filters with small insertion loss at both low and high pass bands.
Finally, to implement a wide-band differentiator, a modified bilinear transformation is used to emulate first-order and second-order differentiators, which are implemented at microwave frequencies range. The experimental results of differentiators reveal that the transfer function of differentiators in the Z domain is implemented in microstrip lines for microwave applications.
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 OUTLINE OF CHAPTERS 3
CHAPTER 2 Z-DOMAIN REPRESENTATIONS OF PARALLEL COUPLED LINE, ASYMMETRIC PARALLEL COUPLED LINE AND SERIAL-SHUNTED LINES 5
2.1 SYMMETRIC COUPLED LINE 5
2.1.a Low-pass parallel coupled line 7
2.1.b High-pass parallel coupled line 9
2.2 ASYMMETRIC PARALLEL COUPLED LINE 10
2.2.a Low-pass asymmetric parallel coupled line 12
2.3 FORMULATIONS OF CHAIN-SCATTERING PARAMETERS OF BASIC SIGNAL LINES 14
2.4 CHAIN-SCATTERING (T) PARAMETERS 15
CHAPTER 3 DUAL-BAND BAND-PASS FILTERS USING EQUAL-LENGTH COUPLED-SERIAL-SHUNTED LINES 18
3.1 INTRODUCTION 18
3.2 Z-DOMAIN REPRESENTATION OF A DUAL-BAND BAND-PASS FILTER 19
3.3 CASCADE CONNECTION OF SIGNAL LINES 22
3.4 SYNTHESIS OF A DUAL-BAND FILTER 24
3.4.a Chebyshev Type II Band-pass Filter 25
3.4.b Butterworth Band-stop Filter 28
3.4.c Dual-band filter 32
3.5 DISCUSSION 34
CHAPTER 4 SYNTHESIS OF NARROW-BAND BAND-STOP FILTERS USING EQUAL-LENGTH ASYMMETRIC COUPLED LINES 35
4.1 INTRODUCTION 35
4.2 SYNTHESIS OF FILTERS 36
4.3 IMPLEMENTATION OF FILTERS 38
4.4 DISCUSSION 40
CHAPTER 5 SYNTHESIS OF BAND-PASS FILTERS USING COUPLED LINES 47
5.1 INTRODUCTION 47
5.2 IMPLEMENTATIONS OF FILTERS 48
5.3 EXPERIMENTAL RESULTS 49
5.3.a Butterworth Band-pass Filter 50
5.3.b Chebyshev Band-pass Filter 54
5.4 DISCUSSION 57
CHAPTER 6 IMPLEMENTATION OF FIRST-ORDER AND SECOND-ORDER MICROWAVE DIFFERENTIATORS 58
6.1 INTRODUCTION 58
6.2 DISCRETE-TIME DIFFERENTIATORS 59
6.3 IMPLEMENTATION OF DIFFERENTIATORS 64
6.3.a First-order differentiator 64
6.3.b Second-order differentiator 64
6.4 EXPERIMENTAL RESULTS 66
6.5 DISCUSSION 72
CHAPTER 7 CONCLUSION AND FUTURE WORK 73
BIBLIOGRAPHY 74
[1] R. Levy, ”Tabels of Element Values for the Distributed Low-Pass Prototype Filter.” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 514-536, Sept. 1965.
[2] R. Levy, ”Tapered Corrugated Waveguide Low-Pass Filters.” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 526-532, June 1973.
[3] G. L. Matthaei, ”Comb-line Bans-pass Filters of Narrow or Moderate Bandwidth.” Microwave J., vol. 6, pp. 82-91, Aug. 1963.
[4] J.-S. Hong and M. J. Lancaster, ”Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microwave and Guided Wave Letters., vol. 5, no. 11, pp. 371-372, Nov. 1995.
[5] R. J. Wenzel, ”Synthesis of Combline and Capacitively Load Interdigital Bandpass Filters of Arbitrary Bandwidth” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 578-586, Aug. 1971.
[6] B. M. Schi®man and G. L. Matthaei, ”Exact Design of Microwave Bandstop Filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-12, pp. 6-15, Jan. 1964.
[7] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance-Matching Networks and Coupling Structures. Artech House: Dedham, Mass. 1980.
[8] Marco Guglielmi, ”Simple CAD Procedure for Microwave Filters and Multiplxers,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 7, pp. 1347-1352, July. 1994.
[9] Riccardo Tascone, patrizia Savi, Danile Trinchero and Renato Orta, ”Scattering Matrix Approach for the Design of Microwave Filters,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 3, pp. 423-430, March 2000.
[10] Bryant, T. G. and I. A. Weiss, ”Parameters of Microstrip Transmission Lines and of Coupled Pairs of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 1021-1027, 1968.
[11] S. C. Burkhart and R. B. Wilcox, ”Arbitrary pulse shape synthesis via nonuniform transmission lines”, IEEE Trans. Microwave Theory Tech., vol. MTT-38, no. 10, pp. 1514-1518, Oct. 1991.
[12] J. E. Schutt-Aine, ”Transient analysis of nonuniform transmission lines,” IEEE Trans. Circuits Syst. I, vol. 39, pp. 378-385, Nov. 1992.
[13] T. Dhaene, L. Martens, and D. D. Zutter, ”Transient simulation of arbitary nonuniform interconnection structures characterized by scattering parameters,” IEEE Trans. Circuits Syst. I, vol. 39, pp. 928-937, Nov. 1992.
[14] A. Ferrari, J. Menez, G. Alengrin, ”New method for tapered transmission line design,” Electron Lett., vol. 27, no. 25, Dec. 1991.
[15] J. L. Hill and D. Mathews, ”Transient analysis of system with exponential transmission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp. 777-783, Sept. 1977.
[16] H. Mohammadian and C. T. Tai, ”A general method of transient analysis for a lossless transmission line and its analytical solution to time-varying resitive terminations,” IEEE Trans. Antenna Propagat., vol. AP-32, pp. 309-312, Mar. 1984.
[17] J.-F. Mao, O. Wing and F.-Y. Chang, ”Transmission line synthesis by the method of characteristic,” IEEE Trans. Circuits Syst I., Vol. 43, pp. 2151-2156, Sept. 1995.
[18] M. W.Wohlers, ”A realizability theory for smooth lossless transmission lines,” IEEE Trans. Circuit Theory, Vol. CT-13, pp. 356-363, Sept. 1966.
[19] Qian, Y. and Yamashita, E. ”Phase compensation and waveform reshaping of picosecond electrical pulses using dispersive microwave transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 6, pp. 924-929, June 1991.
[20] F. Y. Chang, ”Waveform relaxation analysis of nonuniform lossy transmission lines characterized with frequency-dependent parameters,” IEEE Trans. Circuit Syst I., vol. 38, no. 12, pp. 1484-1500, Dec. 1991.
[21] J. P. Mahon and R. S. Elliot, ”Tapered transmission lines with a controlled ripple response ,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1415-1420, Oct. 1990.
[22] T. Komuro, ”Time-Domain analysis of lossy transmission line with arbitrary terminal networks,” IEEE Trans. Circuits Syst., vol. 38, pp. 1160-1164, Oct. 1991.
[23] C.-W. Hsue and T.-W. Pan, ”Reconstruction of nonuniform transmission line from time-doamin reflectometry,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 1, pp. 32-38, Jan. 1997.
[24] P. Ferrari, B. Flechet, and G. Angenieux, ”Time domain characterization od lossy arbitrary characteristic impedance transmission lines”, IEEE Micorwave Guided
Wave Lett., vol. 4, pp. 177-179, June 1994.
[25] T.-W. Pan, C.-W. Hsue and J.-F Huang, ”Arbitrary filter by Using Nonuniform Transmission Lines,” IEEE Microwave and Guided wave Lett., vol. 46, no. 2, pp. 60-62, Feb. 1999.
[26] M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou ”Picosecond Pulse Formation By Transmission line Discontinuities,” Electronics Letters, vol. 25, no. 20, pp. 1363-1365, Sept. 1989.
[27] K.D. Marx, ”Propagation modes, equivalent circuits, and characteristic terminations for multiconductors transmission line with inhomogeneous dielectrics,” IEEE Trans. Microwave Theory Tech., vol. 21, pp.450-457, July 1973.
[28] O. A. Palunsinski and A. Lee, ”Analysis of transients in nonuniform and uniform multiconductor transmission lines” IEEE Trans. Microwave Theory Tech., vol. 37, no. 1, pp. 127-138, Nov. 1989.
[29] L. A. Hayden and V. K. Tripathi, ”Nonuniform coupled microstrip transversal filters for analog signal processing”, IEEE Trans. Microwave Theory Tech., vol. MTT-39, vol. 1, pp. 47-53, Jan. 1991.
[30] Q. Gu and J.A. Kong, ”Transient analysis of single and coupled lines with capacitively-loaded junctions,” IEEE Trans. Microwave Theory Tech., vol.34, pp. 952-964, Sept. 1986.
[31] Garg, R., and I. J. Bahl, ”Characteristic of Coupled Microstriplines,” IEEE Trans. Microwave Theory Tech., vol. MTT-39, pp. 700-705, 1979.
[32] Smith, J. I., ”The Even- and Odd-Mode Capacitance Parameters for Coupled Lines in Suspended Substrate,” IEEE Trans. Microwave Theory Tech., vol. 19, pp.424-431, 1971.
[33] P. I. Richard, “Resistor-transmission line circuits,” Proc. IRE, vol, 36, pp. 217-220, Feb, 1948.
[34] K. Kurada, “General properties and synthesis of transmission-line nerworks,” in Microwave Filters and Circuits, A. Mstsumoto, Ed. New York: Academic, 1970.
[35] Chi-Ho Chang; Hsien-Shun Wu; Jay Yang; Tzuang, C.-K.C., “Coalesced single-input single-output dual-band filter”, Microwave Symposium Digest, 2003 IEEE MTT-S International , Vol. 1, June 2003, pp. 511—514.
[36] Quendo, C.; Rius, E.; Person, C., “An original topology of dual-band filter with transmission zeros”, Microwave Symposium Digest, 2003 IEEE MTT-S International, Vol. 2, June 2003, pp. 1093—1096.
[37] Miyake, H.; Kitazawa, S.; Ishizaki, T.; Yamada, T.; Nagatomi, Y., “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones”, Microwave Symposium Digest, 1997., IEEE MTT-S International, Vol. 2 , June 1997, pp. 789 — 792.
[38] Koshino, M.; Kawase, M.; Kuroda, Y.; Mishima, N.; Takagi, T.; Sakinada, K.; Ebata, Y.; Kimura, S., “Small-sized dual-band SAW filters using flip-chip bonding technology”, Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, Vol. 1 , Oct. 1999, pp. 341 — 346.
[39] J. F. Kaiser, “Digital filters,” ch. 7 in System Analysis by Digital Computer, F. F. Kuo and J. F. Kaiser, Eds. New York: Wiley,1966.
[40] K. Steiglitz, “Computer aided design of recursive digital filters,” this issue, pp. 123-129.
[41] B. Gold and K. L. Jordan, Jr., “A direct search procedure for designing finite duration impulse response filters,” IEEE Trans. Audio and Electroacoustics, vol. AU-17, pp. 33-36, March 1969.
[42] L. Rabiner, B. Gold, and C. McGonegal, “An approach to the approximation problem for nonrecursive digital filters,” this issue, pp. 83-106.
[43] Antoniou, A., Digital filters: analysis design and applications, McGraw-Hill, 1993.
[44] Parks, T. W. and McClellan, J. H., “Chebyshev approximation for nonrecursive digital filters with linear phase”, IEEE Trans Circuit Theory, 1972, CT-19, pp. 189-194.
[45] Antoniou, A., “Improved design method for Kaiser differentiators and comparison with equiripple method”, IEE Proc. E, 1981, 128, (5), pp. 190-196.
[46] Pei, S. C., and Shyu, J.J., “Design of FIR Hilbert transformers and differentiators by eigenfilters”, IEEE Trans. Circuits Syst., 1988, CS-35, pp. 1457-1461.
[47] Pei, S. C., and Shyu, J.J., “Analytic closed form matrix for designing higher order digital differentiators using eigen-approach”, IEEE Trans. Signal Process., 1996, 44, (3), ppp. 698-701.
[48] Sunder, S., Lu, W. S., Antouniou, A., and Su, Y., “Design of digital differentiators satisfying prescribed specifications using optimization techniques”, IEE Proc. G, 1991, 138, pp. 315- 320.
[49] Sunder, S., and Ramachandran, V., “design of equiripple nonrecursive digital differentiators and Hilbert transformers using a weighted least-squares technique”, IEEE Trans. Signal Process., 1994, 42, (9), pp. 2504-2509.
[50] Viano, O., Renfors, M.m and Saramak, T., “Recursive implementation of FIR differentiators with optimum noise attenuation”, IEEE Trans. Instrum. Meas., 1997, 46, (5), pp. 1202-1207.
[51] Herrmann, O., “On the approximation problem in nonrecursive digital filter design”, IEEE Trans. Circuit Theory, 1971, CT-18, pp. 411-413.
[52] Jinaga, B. C., and Dutta Roy, S. C., “Explicit formulas for the weighting coefficients of maximally flat nonrecursive digital filters”, Proc. IEEE, 1984, 72, p. 1092.
[53] Kumar, B., and Dutta Roy, S. C., “Design of digital differentiators for low frequencies”, Proc. IEEE, 1988, 76, (3), pp. 287-289.
[54] Carlsson, B., “Maximum flat digital differentiators”, Electron. Lett., 1991, 27, (8), PP. 675-677.
[55] Robert S. Elliott, An Introduction to Guided Waves and Microwave Circuits. Pretice-Hall, 1993.
[56] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.
[57] R.E Collin, Foundation for Microwave Engineer. New York: McGraw-Hall, Inc., 1993.
[58] M. L. Roy, A. Perennec, S. Toutain and L.C. Calvez, “The continuously varying transmission-line techniqe-application to filter design,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1680-1687, Sept. 1999.
[59] Gaobiao Xiao, K. Yashiro, Ning Guan and S. Ohkawa, “An effective method for designing nonuniformly coupled transmission-line filters,” IEEE Trans. Microwave Theory Tech., Vol. 49, pp.1027-1031 , June 2001.
[60] Da-Chiang Chang, Ching-Wen Hsue, “Design and implementation of filters using transfer functions in the Z domain,” IEEE Trans. Microwave Theory Tech., Vol. 49 , pp. 979-985 , May 2001.
[61] Da-Chiang Chang, Ching-Wen Hsue, “Wide-band equal-ripple filters in nonuniform transmission lines,” IEEE Trans. Microwave Theory Tech., Vol. 50 , pp. 1114-1119 , April 2002.
[62] Minakova, L.B., Rud, L.A. “Waveguide bandstop filters based on partially filled H-plane stubs,” Microwaves, Radar and Wireless Communications, 2002. MIKON-2002. 14th International Conference on , Volume: 1 , 2002.
[63] Jun-Seok Park, Jun-Sik Yun, Dal Ahn “A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,” IEEE Trans. Microwave Theory Tech., Vol. 50, pp.2037-2043, Sept. 2002.
[64] Arne B. Dalby, “From Microwave Filter to Digital Filter and Back Again,” Proc 19th European Microwave Conf., London 1989, pp.892-897.
[65] C.-M. Tsai, S.-Y. Lee and H.-M. Lee, “Transmission-line filters with capacitively loaded coupled lines,” IEEE Trans. Microwave Theory Tech., vol. 51, pp.1517-1524, May 2003.
[66] S. B. Cohn, “Parallel transmission-line-resonator filters”, IRE Trans. MTT, vol. MTT-6, pp. 223-231, April 1958.
[67] S. Akhtarzad, T. R. Rowbotham and P. B. Johns, “The design of coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 23, No. 6, pp. 486-492, June 1975.
[68] Hui-Wen Yao, Abdelmonem A.E., Ji-Fuh Liang, Xiao-Peng Liang, Zaki, K.A., Martin, A., “Wide-band waveguide and ridge waveguide T-junctions for diplexer applications” IEEE Trans. Microwave Theory and Tech., vol. 41, pp. 2166-2173, Dec. 1993.
[69] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal processing. Englewood Cliffs, NJ:Prentice-Hall., 1998.
[70] D. Turner, R. Wilhelm, W. Lemberg, Line Calc. Agilent Technologies. Palo Alto, CA, 2000.
[71] E. G. Cristal, “Coupled-Transmission-Line Directional Couplers with Coupled Lines of Unequal Characteristic Impedances,” IEEE Trans. Microwave Theory Tech., Vol. 14, pp.337-346, July 1966.
[72] G. I. Zysman, A. K. Johnson, “Coupled Transmission Line Network in an Inhomogeneous Dielectric Medium,” IEEE Trans. Microwave Theory Tech., Vol. 17, pp. 753-759, Oct 1969.
[73] V. K. Tripathi, “Asymmetric Coupled Transmission Lines in an In homogeneous Medium,” IEEE Trans. Microwave Theory and Tech., Vol. 23, pp. 734—739, Sept 1975.
[74] N. A. El-Deeb, Esmat A. F. Abdallah, M. B. Saleh, “Design Parameters of Inhomogeneous Asymmetrical Coupled Transmission Lines,” IEEE Trans. Microwave Theory and Tech., Vol. 83, pp. 592—596, July 1983.
[75] S. S. Bedair, “Characteristics of Some Asymmtrical Coupled Transmission Lines,” IEEE Trans. Microwave Theory and Tech., Vol. 32, pp. 108 —110, Jan 1984.
[76] Arne B. Dalby, “From Microwave Filter to Digital Filter and Back Again,” Proc 19th European Microwave Conf., London 1989, pp.892-897.
[77] Drozd, J.M.; Joines, W.T. “Maximally flat quarter-wavelength-coupled transmission-line filters using Q distribution,” IEEE Trans. Microwave Theory Tech., Volume: 45 Issue: 12 Part: 1 , pp. 2100 —2113, Dec. 1997.
[78] Chi-Yang Chang; Cheng-Chung Chen; Hong-Jie Huang “Folded quarter-wave resonator filters with Chebyshev, flat group delay, or quasi-elliptical function response,” Microwave Symposium Digest, 2002 IEEE MTT-S International, pp. 1609-1612 vol. 3. 2002.
[79] R. Levy and J. D. Rhodes, “A combline elliptic filter,” IEEE Trans. Microwave Theory Tech. Vol. 19, pp. 26-29, Jan. 1971.
[80] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Pretice-Hall, 1996.
[81] Sheng-Yuan Lee, Chih-Ming Tsai, “New cross-coupled filter design using improved hairpin resonators” IEEE Trans. Microwave Theory Tech., Vol. 48, pp.2482-2490 , Dec 2000.
[82] M. I. Skolink, Introduction to Radar Systems. New York:Mc-Graw Hill, 1980. pp. 399-408.
[83] M. A. A1-Alaoui,”Novel IIR differentiator from the Simpson rule,” IEEE Trans. Circuits Systems -I, vol. 41, No. 2, pp. 186-187, Feb. 1994.
[84] C. -C .Tseng, ”Design of fractional order digital FIR differentiators,” IEEE Signal Processing Letters, vol. 8, No. 3, pp. 77-79, March, 2001.
[85] B. Kumar and S.C. Dutta-Roy, “Design of digital differentiators for low-frequencies,“ proc. IEEE, vol 76, pp. 287-289, 1988.
[86] S. C. Pei and J. J. Shyu, “Analytic closed form matrix for designing high order digital differentiators using eigenapproach,“ IEEE Trans. Signal Processing, vol.44, No. 3, pp. 698-701, 1996.
[87] I. R. Khan and R. Ohba, “New design of full-band differentiators based on Taylor series,“ IEEE Proc.-Vis. Image Signal Process, vol. 146, No. 4, pp. 185-189, Aug. 1999.
[88] C. -W. Hsue, T. -R. Cheng and H. -M Cheng and H. -M Chen, “A second-order microwave differentiator,” IEEE Microwave Wireless Components Lett., vol. 13, pp. 137-139, March 2003.
[89] T. -R Cheng and C. -W. Hsue, “High-speed waveshaping using non-uniform lines and Z transform technique ,” IEE Proc. -Microwave, Antennas Propag., vol. 150, pp. 77-83, April 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔