(100.26.179.251) 您好!臺灣時間:2021/04/14 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳慶國
論文名稱:開關式磁阻電動機驅動系統之非線性控制器設計及轉軸角度估測的研究
論文名稱(外文):Research on Nonlinear Controller Design and Rotor Position Estimation for Switched Reluctance Motor Drives
指導教授:劉添華
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:開關式磁阻電動機非線性控制器轉軸角/速度估測全數位控制系統
相關次數:
  • 被引用被引用:7
  • 點閱點閱:280
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討開關式磁阻電動機驅動系統的非線性控制器設計及其轉軸角/速度估測方法。文中探討以非線性適應性步階回歸控制應用在開關式磁阻電動機的速度控制,並以李阿普諾法則說明該控制法則可使驅動系統漸近穩定。適當地調整電動機的換相角度,配合本文所提之控制法則,可將開關式磁阻電動機運轉在10轉/分至3000轉/分之間,且不論在波寬調變或單脈波切換操作下,本文所提的控制法則皆可適用。
其次,本文提出兩種轉軸角度的估測方法,方法一採用電流斜率估算電動機自感,進一步由自感估測轉軸角/速度;方法二由鎖相迴路達成轉軸角度估測,文中分別討論此兩種方法並加以比較。
本文以32位元的微電腦,配合並行處理的運算以執行電流控制及速度控制,達成一全數位化的開關式磁阻電動機驅動系統,實驗結果與電腦模擬相當符合,說明本文所提方法的正確性及可行性。
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 XI
符號說明 XII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3目的 4
1.4大綱 7
第二章 開關式磁阻電動機基本原理 8
2.1簡介 8
2.2結構 8
2.3數學模式 13
2.4驅動原理 18
第三章 驅動系統介紹 22
3.1簡介 22
3.2功率轉換器 23
3.3轉矩及弱磁控制 33
3.4四象限控制 35
第四章 非線性控制器設計 39
4.1簡介 39
4.2適應性步階回歸控制器設計 40
4.2.1控制法則介紹 40
4.2.2速度控制器設計 41
4.2.3換相角度控制 46
4.3控制器性能分析 48
第五章 轉軸角度估測法則及其閉迴路驅動系統設計 53
5.1簡介 53
5.2方法一 56
5.2.1電動機自感估測 56
5.2.2電動機自感量測與轉軸角度估測 59
5.2.3啟動方法 62
5.2.4閉迴路系統介紹 63
5.3方法二 64
5.3.1鎖相迴路基本原理 65
5.3.2估測原理 68
5.3.3閉迴路控速系統 71
5.4估測法則分析 71
第六章 系統製作 75
6.1簡介 75
6.2硬體電路製作 76
6.2.1功率轉換器 76
6.2.2回授及偵測電路 79
6.2.3鎖相迴路電路 81
6.2.4微電腦系統及界面電路 83
6.3軟體程式設計 84
6.3.1主程式 84
6.3.2速度控制中斷服務程式 86
6.3.3電流控制中斷服務程式 89
第七章 模擬及實測 91
7.1簡介 91
7.2電腦模擬 92
7.3模擬及實測結果 94
第八章 結論及建議 139
參考文獻 140
作者簡介 151
[1] P. C. Sen, “Electric motor drives and control-past, present, and future,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 562-575, Dec. 1990.
[2] B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 902-909, Sept./Oct. 1993.
[3] G. C. Verghese and S. R. Sanders, “Observers for flux estimation in induction machines,” IEEE Trans. Ind. Electron., vol. 35, no. 1, pp. 85-94, Feb. 1988.
[4] P. Pillay and R. Krishnan, “Application Characteristics of permanent magnet synchronous and brushless dc motors for dervo drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sept./Oct. 1991.
[5] T. J. E. Miller, Switched Reluctance Motors and Their Control. New York: Oxford University Press, 1993.
[6] D.A. Staton, W. L. Soong, and T. J. E. Miller, “Unified theory of torque production in switched reluctance and synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 329-337, Mar./Apr. 1995.
[7] T. J. E. Miller, A. Hutton, C. Cossar, and D. A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp.741-749, July/Aug. 1991.
[8] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1250-1255, Nov./Dec. 1992.
[9] G. S. Buja and M. I. Valla, “Control Characteristics of the SRM drives-part I: operation in the linear region,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 313-321, Oct. 1991.
[10] G. S. Buja and M. I. Valla, “Control characteristics of the SRM drives-part II: operation in the saturated region,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 316-325, June 1994.
[11] C. A. Ferreira, S. R. Jones, W. S. Heglund, and W. D. Jones, “Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 553-561, May/June 1995.
[12] M. E. Elbuluk and M. D. Kankam, “Potential starter/generator technologies for future aerospace application,” IEEE Aerosp. Electron. Syst. mag., vol. 11, no. 10, pp. 17-24, Oct. 1996.
[13] R. B. Inderka, M. Menne and R. W. A. A. D. Doncker, “Control of switched reluctance drives for electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 48-53, Feb. 2002.
[14] A. M. Omekanda, “A new technique for multidimensional performance optimization of switched reluctance motors for vehicle propulsion,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 672-676, May/June 2003.
[15] K. M. Rahman and S. E. Schulz, “Design of high-efficiency and high-torque-density switched reluctance motor for Vehicle propulsion,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1500-1507, Nov./Dec. 2002.
[16] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, Feb. 2002.
[17] J. M. Stephenson and G. C. Jenkinson, “Single-phase switched reluctance motor design, ” IEE Proc.-Electr. Power Appl., vol. 147, no. 2, pp. 131- 139, Mar. 2000.
[18] E. R. T. Goodier and C. Pollock, “Homopolar variable reluctance machine incorporating an axial field coil,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1534-1541, Nov./Dec. 2002.
[19] R. Hamdy, J. Fletcher, and B. W. Williams, “Bidirectional starting of a symmetrical two-phase switched reluctance machine,” IEEE Trans. Energy Conversion, vol.15, no. 2, pp. 211-217, June 2000.
[20] R. Krishnan, R. Arumugam, and J. F. Lindsay, “Design procedure for switched-reluctance motors,” IEEE Trans. Ind. Appl., vol. 24, no.3, pp. 456-461, May/June 1998.
[21] M. N. Anwar, I. Husain, and A. V. Radun, “A comprehensive design methodology for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 37, no.6, pp. 1684-1692, Nov./Dec. 2001.
[22] A. V. Radun, “Design considerations for switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, Sept./Oct. 1995.
[23] N. K. Sheth and K. R. Rajagopal, “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3214-3216, Sept. 2003.
[24] B. C. Mecrow, “New winding configurations for doubly salient reluctance machines,” IEEE Trans. Ind. Appl., vol. 32, no. 6, pp. 1348-1356, Nov./Dec. 1996.
[25] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, May/June 2000.
[26] K. Koibuchi and T. Ohno, “A basic study for optimal design of switched reluctance motor by finite element method,” IEEE Trans. Magn., vol. 33, no. 3, pp. 2077-2080, Mar. 1997.
[27] S. Brisset and P. Brochet, “Optimization of switched reluctance motors using deterministic methods with static and dynamic finite element simulations,” IEEE Trans. Magn., vol. 34, no. 5, pp. 2853-2856, Sept. 1998.
[28] M. Barnes and C.Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100- 1111, Nov. 1998.
[29] S. Vukosavic and R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov./Dec. 1991.
[30] R. Krishnan and P. N. Materu, “Design of a single-switch-per-phase converter for switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 469-476, Dec. 1990.
[31] R. Krishnan, P. N. Materu, “Analysis and design of a low-cost converter for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 29, no. 2, pp. 320-327, Mar/Apr. 1993.
[32] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 222-228, Mar/Apr. 1990.
[33] C. Pollock and B. W. Williams, “Power converter circuits for switched reluctance motors with the minimum number of switches,” IEE Proc.-Electr. Power Appl., vol. 137, no. 6, pp. 373-384, Nov. 1990.
[34] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanabe, and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” IEE Proc.-Electr. Power Appl., vol. 146, no. 5, pp. 488-494, Sept. 1999.
[35] S. Bolognani, E. Ognibeni, and M. Zigliotto, “Sliding mode control of the energy recovery chopper in a C-dump switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 29, no. 1, pp. 181-186, Jan./Feb. 1993.
[36] S. Mir, I Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, Sept. 1997.
[37] K. J. Tseng, S. Cao, and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, Dec. 2000.
[38] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boost,” IEE Proc.-Electr. Power Appl., vol. 140, no. 5, pp. 316-322, Sept. 1993.
[39] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc.-Electr. Power Appl., vol. 147, no. 5, pp. 337-344, Sept. 2000.
[40] R. S. Wallace and D. G. Taylor, “A balanced commutator for switched reluctance motor to reduce torque ripple,” IEEE Trans. Power Electron., vol. 7, no. 4, pp. 617-626, Oct. 1992.
[41] K. Russa, I. Husain, and M. E. Elbuluk, “Torque-ripple minimization in switched reluctancemachines over a wide speed range,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1105-1112, Sept./Oct., 1998.
[42] P. L. Chapman and S. D. Sudhoff, “Design and precise realization of optimized current waveforms for an 8/6 switched reluctance drive,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 76-83, Jan. 2002.
[43] G. S. Buja, R. Menis, and M. I. Valla, “Variable structure control of an SRM drive,” IEEE Trans. Ind. Electron., vol. 40 , no. 1, pp. 56-63, Feb. 1993.
[44] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, Dec. 1997.
[45] S. Bolognani and M. Zigliotto, “Fuzzy logic control of switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1063-1068, Sept./Oct. 1996.
[46] C. T. Liu, L. F. Chen, J. L. Kuo, Y. N. Chen, Y. J. Lee, and C. T. Leu, “Microcomputer control implementation of transverse flux linear switched reluctance machine with rule-based compensator,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 70-75, Mar. 1996.
[47] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc.-Electr. Power Appl., vol. 143, no. 5, pp. 371-379, Sept. 1996.
[48] M. Ilic’-Spong, R. Marino, S. M. Peresada, and D. G. Taylor, “Feedback linearizing control of switched reluctance motors,” IEEE Trans. Automat. Contr., vol. AC-32, no. 5, pp. 371-379, May 1987.
[49] M. Ehsani, I. Husain, and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 128-135, Jan./Feb. 1992.
[50] M. Ehsani , I. Husain, S. Mahajan, and K. R. Ramani, “New modulation encoding techniques for Indirect rotor position sensing in switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 30, no. 1, pp. 85-91, Jan./Feb. 1994.
[51] M. Ehsani and K. R. Ramini, “Direct control strategies based on sensing inductance in switched reluctance motors,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 74-82, Jan. 1996.
[52] A. Lumsdaine and J. H. Lang “State observers for variable-reluctance motors,” IEEE Trans. Ind. Electron., vol. 37, no. 2, pp. 133-142, Apr. 1990.
[53] J. Zhan, C. C. Chan, and K. T. Chau, , “A novel sliding-mode observer for indirect position sensing of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no.2 , pp. 390-397, Apr. 1999.
[54] R. A. McCann, M. S. Islam, and I. Husain, “Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 51-58, Jan./Feb. 2001.
[55] M. S. Islam, I. Husain, R. J. Veillette, and Celal Batur, “Design and performance analysis of sliding-mode observers for sensorless operation of switched reluctance motors,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 3, pp. 383-389, May 2003.
[56] P. P. Acarnley, R. J. Hill,, and C. W. Hooper, “Detection of rotor position in stepping and switched motors by monitoring of current waveforms,” IEEE Trans. Ind. Electron., vol. IE-32, no. 3, pp. 2145-222, Aug. 1985.
[57] S. K. Panda and G. A. J. Amaratunga, “Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 1: analysis,” IEE Proc.-Electr. Power Appl., vol. 140, no. 1, pp. 80-88, Jan. 1993.
[58] S. K. Panda and G. A. J. Amaratunga, “Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 2: experimental results,” IEE Proc.-Electr. Power Appl., vol. 140, no. 1, pp. 89-96, Jan. 1993.
[59] I. Husain and M. Ehsani, “Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 665-672, May/June 1994.
[60] A. D. Cheok and N. Ertugrul, “High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 319-334, Mar. 2000.
[61] N. Ertugrul and A. D. Cheok, “Indirect angle estimation in switched reluctance motor drives using fuzzy logic based motor model,” IEEE Trans. Power Electron., vol.15 , no. 6, pp. 1029-1044, Nov. 2000.
[62] D. G. Taylor, “Nonlinear control of electric machines: an overview,” IEEE Contr. Sysmt. Mag., vol. 6, pp. 41-51, Dec. 1994.
[63] F. Filicori, C. G. L. Bianco, and A. Tonielli, “Modeling and control strategies for a variable reluctance direct-drive motor,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 105-115, Feb. 1993.
[64] L. B. Amor, L. A. Dessaint, O. Akhrif, and G. Olivier, “Adaptive feedback linearization for position control of a switched reluctance motor: analysis and simulation,” in Proc. 1992 Int. Conf. Power Electrons and Motion Control, pp. 150-159, Nov. 1992.
[65] L. B. Amor, L. A. Dessaint, O. Akhrif, and G. Olivier, “Adaptive input-output linearization of a switched reluctance motor for torque control,” in Proc. IEEE IECON’93, pp. 2155-2160, Nov. 1993.
[66] M. T. Alrifai, J. H. Chow, and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc.-Electr. Power Appl., vol. 150, no. 2, pp. 193-200, Mar. 2003.
[67] J. J Carroll and A. J. Geoghan, “A backstepping based computed torque controller for switched reluctance motors driving inertial loads,” in Proc. 4th IEEE Conf. Control Application, pp. 779-786, Sept. 1995.
[68] F. Blaabjerg,P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, May 1999.
[69] B. Y. Ma, T. H. Liu, C. G. Chen, and W. S. Feng, “Design and implementation of a sensorless switched reluctance drive system,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1193-1207, Oct. 1998.
[70] T. Wakasa, H. J. Guo, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON’02, Sevilla, Spain, pp. 502-507, Nov. 2002.
[71] M. Ehsani, I. Husain, K. R. Ramini, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 224-230, Apr. 1993.
[72] R. M. Davis, W. F. Ray, and R. J. Blake, “Inverter drive for switched reluctance motor: circuits and component ratings,” IEE Proc.-Electr. Power Appl., vol. 128, no. 2, pp. 126-136, Mar. 1981.
[73] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda, and N. N. Fulton, “Variable-speed switched reluctance motors,” IEE Proc.-Electr. Power Appl., vol. 127, no. 4, pp. 253-265, July 1980.
[74] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified c-dump converter for variable-reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, Sept./Oct. 1992.
[75] H. Le-Huy, P. Viarouge, and B. Francoeur, ”A novel unipolar converter for switched reluctance motor,” IEEE Trans. Power Electron., vol. 5, no. 4, pp. 469-475, Oct. 1990.
[76] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc.-Electr. Power Appl., vol. 148, no. 4, pp. 345-353, July 2001.
[77] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, July 2002.
[78] J. J. E. Slotine, and W. Li, Applied Nonlinear Control. New Jersey: Prentice Hall, 1991.
[79] K. S. Narendra, and A. M. Annaswamy, Stable Adaptive System. New Jersey: Prentice Hall, 1989.
[80] I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Trans. Automat. Contr., vol. 36, no. 11, pp. 1241-1253, Nov. 1991.
[81] P. V. Kokotović, “The joy of feedback: nonlinear and adaptive,” IEEE Contr. Sysmt. Mag., vol. 12, pp. 7-17, June 1992.
[82] M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, “Adaptive nonlinear control without overparametrization,” Syst. Contr. Lett., vol. 19, pp177-185, 1996.
[83] M. Krstić, I. Kanellakopoulos, P. V. Kokotović, Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995
[84] K. S. Narendra, Y. H. Lin, and L. S. Valavani, “Stable adaptive controller design, part II: proof of stability,” IEEE Trans. Automat. Contr., vol. AC-25, no. 3, pp. 440-448, June 1980.
[85] P. C. Kjaer, J. J. Gribble, and T. J. E. Miller, “High-grade control of switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 33, no. 6, pp. 1585-1593, Nov./Dec. 1997.
[86] G Gallegos-López, P. C. Kjaer, and T. J. E. Miller, “High-grade position estimation for srm drives using flux linkage/current correction model,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 859-869, July/Aug. 1999.
[87] R. C. Becerra, M. Ehsani, and T. J. E. Miller, “Commutation of SR motors,” IEEE Power Electron., vol. 8, no. 3, pp. 257-263, July 1993.
[88] W. D. Harris and J. H. Lang, “A simple motion estimator for variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 237-243, Mar./Apr. 1990.
[89] T. J. E. Miller, Electronic Control of Switched Reluctance Machines. Oxford, U. K.: Newnes, 2001.
[90] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, Feb. 2002.
[91] A. D. Cheok and N. Ertugrul, “Computer-based automated test measurement system for determining magnetization characteristics of switched reluctance motors,” IEEE Trans. Instrum. Meas., vol. 50, no. 3, pp. 690-696, June 2001.
[92] R. S. Chokhawala and S. Sobhani, “Switching voltage transient protection schemes for high-current IGBT modules,” IEEE Trans. Ind. Appl., vol. 33, no. 6, pp. 1601-1610, Nov./Dec. 1997.
[93] T. L. Harman, The Motorola MC68020 and MC68030 Microprocessors- Assembly Language, Interfacing, and Design. New Jersey: Prentice-Hall, 1989.
[94] Motorola, MC68881/MC68882 Floating-Point Coprocessor User¢s Manual. New Jersey: Prentice Hall, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔