(18.204.2.190) 您好!臺灣時間:2021/04/19 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝詠昇
研究生(外文):Hsieh Yeong-sheng
論文名稱:以雙滑窗演算法解決渦輪解碼器問題
論文名稱(外文):Bi-sliding window algorithm for turbo decoding
指導教授:蘇順豐
指導教授(外文):Su Shun-Feng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:53
中文關鍵詞:渦輪碼滑窗法夏農極限
外文關鍵詞:Turbo codeSliding windowShannon''''s limitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無線通訊網路已在這十年中蓬勃發展,越來越多的數位內容也快速地增加中,透過無線通訊網路而能夠輕易地傳送。由於多媒體技術的快速提升,無線通訊網路必須能夠安全地傳送更大的封包。在3GPP的規格當中,最大的通訊編碼封包被制定為5,114個位元,由於渦輪碼的性能優越,因此在3GPP的規格中廣為使用。
渦輪碼的解碼器部分使用BCJR演算法作為其主要解碼的部分,由於BCJR演算法在反向部分的解碼必須等待最後的位元,因此,在記憶體的使用上有著其先天上的缺點。為了改善這個問題,滑窗演算法因應而生。藉由滑窗演算法,BCJR演算法在反向部分的解碼即不需要等待最後的位元,也因此可以有效的解決BCJR先天上的缺點。
由於滑窗演算法運作時必須儲存整個視窗的狀態(state metrics),因此,我們提出可進一步降低記憶體的雙向滑窗法。而滑窗法以及雙向滑窗法將會在此論文中作深入之探討與比較。
Wireless communication network has been greatly prospered in the last decade. More and more digital contents are rapidly invented and can be easily transferred via the communication network. Because the related multimedia tech. is rapidly grown up, wireless communication transmission is expected for dealing with the larger frame. In 3GPP spec, the maximum code block size is defined as 5,114. Generally, the most powerful CODEC algorithm- turbo code is adopted in 3GPP spec. In the decoding part of turbo code, it involves BCJR algorithm. BCJR algorithm is composed of two parts: forward and backward. Actually, because backward part should operate initially from the last symbol, it has its inherent drawback in its memory costs. To deal with this problem, sliding window method is proposed. Sliding window, which based on the property of dual-maximum and Viterbi algorithm, can deal with the drawback of backward part in BCJR algorithm. In a fact, when sliding window adopted, it still need to store full state metric in each window. In this paper, we proposed a new method which named as bi-sliding which can further required memory size.
摘要...….……………………………………………………………………………….I
Abstract..………………………………………………………………………………II
誌謝..…..…….……………………………………….…………………..…………..III
Table of Contents………………………………………..…..……....……………….IV
List of Tables…………………………………………………………………………VI
List of Figures……………………………………………………………………….VII
Chapter 1 INTRODUCTION
1.1 Digital Communication Systems……………………………………………..1
1.2 Motivations and Related Work……………………………………………….2
1.3 Thesis Organization…………………………………………………………..2
Chapter 2 INTRODUCTION OF TURBO CODES
2.1 Introduction....………………………………………………………………..4
2.2 Shannon’s Limitation....……………………………………..……………….4
2.3 Convolutional Code....………………………………………………………..5
2.3.1 Encoder…………………………………………………………………5
2.3.2 Transfer Functions of Convolutional Codes……….…….……………..7
2.3.3 Decoder………………………………………………………………..11
2.4 Turbo Code………………………………………………………………….15
2.4.1 Turbo Encoder………………………………………………………...16
2.4.2 Turbo Decoder………………………………………………………...16
2.4.3 Flow Chart of Turbo Decodin……………….………………………..18
Chapter 3 Dual-Maximum and Sliding Window
3.1 Introduction…………………………………………………………………20
3.2 Max-Log-MAP algorithm and Dual-maximum………………….…………21
3.3 Sliding Window Method...………………………………………………….26
Chapter 4 Bi-sliding Window Algorithm
4.1 Introduction…………………………………………………………………30
4.2 Bi-sliding Window………………………………………………………….31
4.3 Memory Requirement Analysis……………………………………………..38
Chapter 5 Experimental Results
5.1 Introduction…………………………………………………………………39 5.2 Experiments…………………………………………………………………39
5.2.1 Optimal Window Size………………………………………………...40
5.2.2 Comparison for Bi-sliding Window and Sliding Window……………46
Chapter 6 Conclusions and Future Work…………………………………………48
Reference……………………………………………………………………………..49
作者簡介……………………………………………………………………………..52
授權書………………………………………………………….…………………….53
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error- correcting coding and decoding: Turbo-codes. 1,” IEEE Conf. Communications, Vol. 2, pp. 1064—1070, 1993.
[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Communications, Vol. 44, pp. 1261—1271, 1996.
[3] A. Viterbi, “Error bounds for convolutional coding and an asymptotically optimum decoding algorithm,” IEEE Trans. Information Theory, vol. IT-13, pp. 260-269, 1967.
[4] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Information Theory, vol. IT-20, pp. 284-287, 1974.
[5] S. Benedetto, G.. Montorsi, D. Divsalar, and F. Pollara, “Serial concatenation of interleaved codes: performance analysis, design and iterative decoding,” TDA Progr. pp. 47.1.1-47.1.7, 1996.
[6] J. Hagenauer and P. Horher, “A viterbi algorithm with soft-decision outputs and its applications,” Proc. IEEE GLOBECOM, vol. 3, pp. 1680—1686, 1989.
[7] C. E. Shannon, “A mathematical theory of communication,'''' Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, 1948.
[8] A. J. Viterbi, “ Convolutional codes and their performance in communications systems,” IEEE Trans. Communications, vol. COM-19, 1971.
[9] R.V. Chandran, wireless, “http://www.ittc.ku.edu/~rvc/projects, May 2002.
[10] W.J. Gross, and P. G. Gulak, “ Simplified map algorithm suitable for implementation of turbo decoders,” IEEE Electronics Letters, vol. 34, pp. 1577-1578, 1998.
[11] P. Robertson, E. Villebrun and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” Intern. Conf. Communications, vol. 2, pp. 1009—1013, 1995.
[12] M. C. Valenti and J. Sun, “The UMTS turbo code and an efficient decoder implementation suitable for software-defined radios,” Intern. J. Wireless information networks, vol. 8, pp. 203-215, 2001.
[13] Sangho Yoon, “Turbo decoder implementation, ” IEEE Conf. Vehicular Tech., vol. 3, pp. 1824—1828, 2001.
[14] J. Petersen, “Implementierungsaspekte zur symbol-by-symbol MAP decodierung von faltungscodes,” ITG-Fachbericht 130, pp. 41-48, 1994.
[15] P. Roberson and P. Horner, “Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding,“ European Trans. Telecommunication, pp. 119-125, 1997.
[16] A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes,” IEEE J. Select. Areas Common., vol.16, pp. 260-264, 1998.
[17] S. Benedetto, D. Divsalar, G.. Montorsi, and F. Pollara, “Soft input soft output MAP module to decode parallel and serial concatenated codes,” TDA Progr. Rep. 42-127, pp. 1-20, 1996.
[18] S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,” Ph.D. dissertation, Univ. South Australia, pp. 23-24, 1996.
[19] S. S. Pietrobon, “Efficient implementation of continuous map decoders and a synchronization technique for turbo decoders,” Proc. Information Theory Application, pp. 586-589, 1996.
[20] J. A. Erfanian and S. Pasupathy, “Low-complexity parallel-structure
symbol-by-symbol detection for ISI Channels,” IEEE Conf. Communications, Computers and Signal Processing, pp. 350-353, 1989.
[21] S. Benedetto, D. Divsalar, G.. Montorsi, and F. Pollara, “Soft-output algorithms in iterative decoding of turbo codes,” TDA Progr. Rep. 42-124, pp. 63-86, 1996.
[22] B. J. Frey and F. R. Kschischang, "Iterative decoding of compound codes by probability propagation in graphical models," IEEE J. Select. Areas Common., vol.16, pp. 219-230, 1998.
[23] P. Chaudhury, W. Wohr, and S. Onoe, “The 3GPP proposal for IMT-2000,” IEEE Communications Magazine, vol. 37, pp. 72 — 81, 1999.
[24] Gyongsu Lee and Sin-Chong Park, “Turbo map decoder design for IS-2000 system,” IEEE Conf. Vehicular Tech. vol. 1 pp. 412-415 ,2000.
[25] M. Marandian, J. Fridman, Z. Zvonar and M. Salehi, “Performance analysis of turbo decoder for 3GPP standard using the sliding window algorithm,” IEEE Personal, Indoor and Mobile Radio Communications, vol. 2, pp. E-127-E-131, 2001.
[26] J. Vogt, K. Koors A. Finger and G. Fettweis, “Comparison of different turbo decoder realizations for IMT-2000,” IEEE Conf. Global Tele. vol. 5 pp. 2704 — 2708, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔