(3.227.208.0) 您好!臺灣時間:2021/04/18 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉建宏
研究生(外文):Liu Chien-Hung
論文名稱:數位廣播接收機之音訊解碼器與錄音器設計
論文名稱(外文):Design of the Audio Decoder and Recorder of a DAB Receiver
指導教授:吳傳嘉
指導教授(外文):Wu Chwan-Chia
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:85
中文關鍵詞:數位音訊廣播(DAB)音訊壓縮MPEG硬體描述語言(HDL)MP3
外文關鍵詞:Digital Audio Broadcasting (DAB)Audio CompressionMPEGHDLMP3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我國的數位音訊廣播 (Digital Audio Broadcasting) 採用歐規Eureka 147標準,在數位廣播系統中利用數位訊號處理技術,並應用了創新的通道編碼調變及數位音訊壓縮,進而能提供高品質的音樂服務,同時也支援多媒體資料的傳輸,在近年引起廣大的注意。擁有眾多優點的數位音訊廣播在未來將取代現行傳統的AM及FM類比廣播系統。
音訊壓縮對高品質的數位音訊傳輸及儲存是一項必要的技術,在本論文中將透過對DAB數位廣播系統之音訊解碼流程的研究,提出一套能有效降低並簡化硬體設計複雜度的音訊解碼器,並針對其高品質音樂節目,設計一個能及時錄製數位音訊的錄音器,並以極少空間錄製儲存下來,使收聽者能反覆播放聆聽。本論文針對DAB音訊解碼器中需要複雜運算的四個功能模組,設計整合成一個簡化的硬體解碼電路;並探討不同的音訊壓縮技術就壓縮率與音質上做比較,選擇目前使用廣泛的MPEG/Audio Layer III (MP3) 當作錄音格式,最後改進其編碼器運算複雜度,實現一個能提供及時MP3編碼的DAB錄音器。本論文所設計之數位廣播接收機之音訊解碼器與錄音器,希望能提供未來應用的基礎,以加速我國數位音訊廣播的普及。
The new digital radio system DAB (Digital Audio Broadcasting), described in the European Eureka-147 standard, is a very innovative broadcast system and has attracted intensive attention in recent years because of its high quality audio service and supporting multimedia data to mobile, portable and fixed receivers. DAB will soon replace the existing analog broadcasting such as AM (Analog Modulation) and FM (Frequency Modulation) in the future.
Audio compression is a requirement for efficient transmission and storage of high fidelity digital audio. In this thesis, we focus on the DAB audio decoding (ISO/IEC MPEG Audio Layer II Decoding) and record the audio data for further listening. The functions and computation complexity in DAB audio decoder will be analyzed to reduce and simplify the decoding overhead. The proposed architecture has been integrated into one hardware block and successfully coded in synthesizable Verilog HDL language and verified through FPGA environment. Further, we look at other audio compression standards with regards to both compression rate and sound quality. The results obtained with different algorithms are discussed and compared. The chosen recording format, MPEG/Audio Layer III (MP3), is improved on its encoding complexity. A software program of the DAB audio recorder based on a modified real-time MP3 encoder is built.
The proposed design of the audio decoder and recorder of a DAB receiver retains both the decoding computation capability in the hardware and the recording flexibility in the software. The achievement of this thesis can be used as a basis of future applications and speed up the popularity of DAB receivers.
ABSTRACT I
CONTENTS II
LIST OF FIGURES IV
LIST OF TABLES VI
CHAPTER 1 INTRODUCTION 1
1.1 Digital Audio Broadcasting 1
1.2 Research Background and Motivation 7
1.3 Thesis Organization 8
CHAPTER 2 DIGITAL AUDIO COMPRESSION 9
2.1 Why Compression 9
2.2 Human Hearing and Auditory Systems 10
2.2.1 Simultaneous Masking 11
2.2.2 Non-simultaneous Masking 12
2.2.3 Psychoacoustic Coding 13
2.3 Introduction to MPEG Audio 14
2.3.1 MPEG-1 Coding Modes 16
2.3.2 MPEG Audio Layer I 17
2.3.3 MPEG Audio Layer II 18
2.3.4 Frame Format 19
2.3.5 Summary 20
2.4 MPEG Audio Layer III 21
2.5 MPEG Advanced Audio Coding 31
CHAPTER 3 DAB AUDIO CODING 34
3.1 DAB Audio Encoding 36
3.1.1 Analysis Subband Filter Bank 36
3.1.2 Scalefactor Calculation 38
3.1.3 Psychoacoustic Model 40
3.1.4 Bit Allocation 42
3.1.5 Quantization and Coding 44
3.2 DAB Audio Bitstream Format 46
3.2.1 MPEG Audio Frame to DAB Audio Frame 46
3.2.2 DAB Audio Frame 47
3.2.3 Frame Header 48
CHAPTER 4 DESIGN OF DAB AUDIO DECODER 49
4.1 DAB Audio Decoder 49
4.2 Degrouping Analysis 51
4.2.1 Grouping 51
4.2.2 Degrouping 52
4.3 Inverse Quantization Analysis 53
4.4 Synthesis Subband Filter Analysis 54
4.5 Architecture Design 57
4.5.1 Inverse Quantization Module 58
4.5.2 Inverse MDCT Module 59
4.5.3 Inverse PQMF Module 61
4.5.4 Overall Architecture 63
CHAPTER 5 DESIGN OF DAB AUDIO RECORDER 64
5.1 Recording Format 64
5.2 Modified MP3 Encoder 68
5.2.1 Lee’s Fast DCT Algorithm 68
5.2.2 Pre-calculated Quantization Table 72
5.2.3 Comparisons with Other Encoders 73
5.3 Real-time DAB Audio Recorder 76
5.3.1 Removal of the Psychoacoustic Model II 78
5.3.2 Implementation and Optimization 79
CHAPTER 6 CONCLUSIONS 82
REFERENCES 84
[1] ETSI/ETS 300 401: “Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” 2001.
[2] W. Hoeg and T. Lauterbach, “Digital Audio Broadcasting, Principles and Applications,” 2001.
[3] ISO/IEC 11172-3: “Information technology - Coding of moving pictures and associated audio for digital storage media at up to 1,5 Mbit/s - Part 3: Audio,” 1992.
[4] M. Bosi and R. E. Goldberg, “Introduction to Digital Audio Coding and Standards,” 2003.
[5] E. Sternheim, R. Singh, R. Madhavan and Y. Trivedi, “Digital Design and Synthesis with Verilog HDL,” 1993.
[6] B. Zeidman, “ Verilog Designer’s Library,” 1999.
[7] S. Shlien, “Guide to MPEG-1 Audio Standard,” IEEE Transactions on Broadcasting, Vol. 40, No. 4, pp.206-218, 1994.
[8] F. Argenti, F. Del and E. D. Re, “Audio decoding with frequency and complexity scalability,” Vision, Image and Signal Processing, IEE Proceedings, Vol. 149, No3, pp.152-158, 2002.
[9] P. Noll, “MPEG Digital Audio Coding,” IEEE Signal Processing Magazine, 1997.
[10] G. Maturi, “Single Chip MPEG Audio Decoder,” IEEE International Conference on Consumer Electronics, Vol. 38, No. 3, pp.162-163, 1992.
[11] P. D. Smet and T. V. Stichele, “Subband based MPEG Audio Mixing for Internet Streaming Applications,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp.1393-1396, 2001.
[12] D. Y. Pan, “Digital Audio Compression,” IEEE Transactions on Consumer Electronics, Vol. 39, pp.269-273, 1993.
[13] D. Y. Pan, “A Tutorial on MPEG/Audio Compression,” Multimedia IEEE, Vol.2, pp.60-74, 1995.
[14] ISO/IEC 13818-7 “Information Technology — Generic Coding of Moving Pictures and Associated Audio Information - Part 7: Advanced Audio Coding,” 1997. [15] B. G. Lee, “A New Algorithm to Compute The Discrete Cosine Transform,” IEEE Transactions on Acoustic, Speech, Signal Processing, Vol.2, No.6, pp.1243-1245, 1984.
[16] J. Enerstam and J. Peman. “Hardware Implementation of MPEG audio real-time encoder,” AXIS, 1998.
[17] K. R. Rao, “ An efficient implementation of the forward and inverse MDCT in MPEG audio coding,” IEEE Signal Processing Letters, Vol.8, No.2, pp.48-51, 2001.
[18] K. Faze, S. Aign, A. Romanowski and M. J. Ruf, “Mobile multimedia services via DAB: DMB,” IEEE Global Telecommunications Conference, Vol. 3, pp.1312-1317, 1997.
[19] B. Edler, “Aliasing Reduction in Subbands of Cascaded Filter Banks with Decimation,” IEEE Electronic Letters, Vol. 28, No. 12, 1992.
[20] C.M. Liu, C.C. Chen, W.C. Lee, S.W. Lee, “A Fast Bit Allocation Method for MPEG Layer III,” ICCE. International Conference on Consumer Electronics, pp.22-24, 1999.
[21] M. Kumar and M. Zubair, “A High Performance Software Implementation of MPEG Audio Encoder,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp.1049-1052, 1996.
[22] Y. Takamizawa, T. Nomura, and M. Ikekawa, “High-quality and processor-efficient implementation of an MPEG-2 AAC encoder,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp.985-988, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔