(3.227.208.0) 您好!臺灣時間:2021/04/18 14:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴炳佑
研究生(外文):LAI, B. Y.
論文名稱:具拘束阻尼層部份覆蓋樑之振動及阻振分析
論文名稱(外文):Vibration and Reduction Analysis fo a CLD Covered Beam
指導教授:黃世欽黃世欽引用關係
指導教授(外文):Huang, S. C.
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:能量拘束阻尼振動三層結構被動式控制部份覆蓋黏彈材料
外文關鍵詞:energyconstrained damping layervibrationsandwich structuresPCLDPartial Treatmentviscoelasic layerVEM
相關次數:
  • 被引用被引用:7
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本文探討具拘束阻尼層(Constrained Layer Damping,CLD)部份覆蓋樑之振動與阻振分析。在理論推導方面,利用Mead與Markus之拘束阻尼層變形理論為本及運用平衡關係式,續採用漢米爾頓原理,並嘗試以正解(exact solution)求之。推導出僅含兩個位移變數之具拘束阻尼層部份覆蓋樑之運動方程式。所導出之運動方程式,在自由振動分析方面,以不同覆蓋位置及不同覆蓋面積,分析固有頻率與固有模態之變化情形。文末並進行CLD之實驗分析,量測不同覆蓋位置及不同覆蓋面積對樑結構之阻振效果的變化情形。
本研究結果,可使工程人員瞭解不同覆蓋拘束阻尼層結構阻振的效應,也可於評估不同結構抑振及貼覆位置方面,提供有用的資訊,具有工程應用之價值。
This thesis presents the vibration and reduction analysis for partial constrained layer damping(CLD) treatment of beams. The equations of motion of beam with partial CLD treatment are derived by energy principle and equilibrium relations. This model, unlike the previous, used just two displacement functions:one is the in-plane placement and the other is the transverse displacement of beam. In the free vibration, the frequencies and the mode shapes in a sense of exactness are solved for various coverage ratios and different coverage positions. Experimental analysis on PCLD are conducted to measure the vibration reduction quantities and compare to the theoretical results.
The derived theory and obtained results hopefully would provide, the engineers very useful information in evaluating vibration reduction for different constrained layer damping (CLD) treatment of beams.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖表索引 VII
符號索引 X
第一章 緒論 1
1.1文獻回顧 1
1.2研究動機與目的 3
1.3 本文架構 4
第二章 具拘束阻尼層部分覆蓋樑之理論分析 6
2.1具拘束阻尼層覆蓋之三層樑理論 6
2.1.1應力、應變、位移關係式 7
2.1.2黏彈材料之基本假設 8
2.2三層樑結構之能量式 11
第三章 運動方程式之推導與邊界條件 14
3.1三層樑結構之平衡關係式 14
3.2系統之運動方程式 16
3.3系統之邊界條件與相容條件 21
3.3.1系統之邊界條件 21
3.3.2系統之相容條件 21
3.4系統之頻率方程式 27
第四章 系統之自由振動分析 32
4.1系統之固有頻率與模態 32
4.1.1固有頻率 33
4.1.2固有模態 34
4.2具拘束阻尼層部份覆蓋樑之固有頻率分析 36
4.2.1不同覆蓋位置對頻率之影響 36
4.2.2不同覆蓋面積對頻率之影響 37
4.3具拘束阻尼層部份覆蓋樑之固有模態分析 38
4.3.1不同覆蓋位置對固有模態之變化情形 39
4.3.2不同覆蓋面積對固有模態之變化情形 39
第五章 各模態阻尼之能量分析 50
第六章 實驗架設與結果 57
6.1實驗架設 57
6.1.1量測設備 57
6.1.2分析系統 59
6.2實驗結果與比較 60
6.2.1不同貼覆位置之時域響應 60
6.2.2不同覆蓋面積之時域響應 61
第七章 結論與未來展望 72
7.1結論 72
7.2未來研究方向 73
參考文獻 75
附錄 78
作者簡介 81
[1]Kerwin, E. M. Jr., Damping of Flexural Waves by a
Constrained Visco-Elastic Layer, Journal of the Acoustical
Society of America, 31, pp. 952-962(1959).
[2]DiTaranto, R. A., Theory of Vibratory Bending for Elastic
and Viscoelastic Layered Finite-Length Beams, Journal of
Applied Mechanics, ASME, pp. 881-886(1965).
[3]Mead, D. J. and Markus, S., The Forced Vibration of a Three-
Layer Damped Sandwich Beam with Arbitrary Boundary
Conditions, AIAA Journal, 10(2), pp. 163-175(1969).
[4]Yan, M. J. and Dowell, E. H., Governing Equations of
Vibrating Constrained-Layer Damping Sandwich Plates and
Beams, Journal of Applied Mechanics, ASME, pp. 1041-1046
(1972).
[5]Douglas, B. E. and Yang, J. C. S., Transverse Compressional
Damping in the Vibratory Response of Elastic-Viscoelastic
Beams, AIAA Journal, 16(9), pp. 925-930(1978).
[6]Rao, D. K., Frequency and loss factors of sandwich beams
under various boundary conditions, Journal of Mechanical
Engineering Science, 20(5), pp271-282(1978).
[7]Lall, A. K., Asnani, N. T. and Nakra, B. C., Damping
analysis of partially covered sandwich beams, Journal of
Sound and Vibration, 123(2), pp.247-259, (1988).
[8]Mead, D. J. and Yaman, Y., The Harmonic Response of
Rectangular Sandwich Plates with Multiple Stiffening: A
Flexural Wave Analysis, Journal of Sound and Vibration,145
(3), pp.409-428(1991).
[9]Rao, M. D. and He, S., Dynamic Analysis and Design of
Laminated Composite Beams with Multiple Damping Layers, AIAA
Journal, 31(4), pp. 736-745(1993).
[10]Roy, P. K. and Ganesan, N., A Vibration and Damping
Analysis of Circular Plates with Constrained Damping Layer
Treatment, Computers and Structures, 49(2), pp. 269-274
(1993).
[11]Ramesh, T. C. and Ganesan, N., Orthotropic Cylindrical
Shells with a Viscoelastic Core: A Vibration and Damping
Analysis, Journal of Sound and Vibration, 175(4), pp. 535-
555(1994).
[12]Johnson, C. D., Design of Passive Damping Systems, Special
50th Anniversary Design Issue, ASME, 117, pp. 171-176
(1995).
[13]Lu, Y. P., Forced Vibrations of Damped Cylindrical Shells
Filled with Pressurized Liquid, AIAA Journal, 15(9), pp.
1242-1249 (1977).
[14]Lu, Y. P., Roscoe, A. J. and Douglas, B. E., Analysis of
the Response of Damped Cylindrical Shells Carrying
Discontinuously Constrained Beam Elements, Journal of Sound
and Vibration, 150(3), pp. 395-403 (1991).
[15]Huang, S. C. and Hu, Y. C., The frequency response and
damping effect of three-layer thin shell with viscoelastic
core, Computers and Structures, 76, pp. 577-591(2000).
[16]Huang, S. C. and Chen, Y. C., Parametric Effects on the
Vibration of Plates with CLD treatment, Journal of the
Chinese Society of Mechanical Engineers, 20(2), pp. 159-167
(1999).
[17]Huang, S. C., Inman, D. J. and Austin, E. M., Some Design
Considerations for Active and Passive Constrained Lager
Damping Treatment, Journal of Smart Material and Structure,
5, pp.301-313(1995).
[18]Meirovitch, L., Principles and Techniques of Vibration,
Prentice-Hall, Inc.,(1997).
[19]Ferry, J. D. Viscoelastic Properties of Polymers, John
Wiley and Sons, Inc., New York, N. Y.,(1960).
[20]Inman, D. J. Engineerig Vibration,PrenticeHall
International, Inc. New Jersey.,(2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔