(18.204.2.190) 您好!臺灣時間:2021/04/19 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂至浩
研究生(外文):Lu Chi-Hao
論文名稱:D6AC超高強度合金鋼之惰氣鎢極電弧銲及電漿電弧銲接研究
論文名稱(外文):GTAW & PAW of Ultrahigh-Strength D6AC Alloy Steel
指導教授:蔡顯榮蔡顯榮引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:135
中文關鍵詞:D6ACGTAWPAW
相關次數:
  • 被引用被引用:3
  • 點閱點閱:494
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於探討D6AC超高強度合金鋼以惰氣鎢極電弧銲接與電漿電弧銲接兩種不同能量密度之實用高品質銲接製程進行3mm厚D6AC板材對銲,並搭配不同之銲前、銲後熱處理組合;以金相顯微組織觀察、銲道截面微硬度分佈量測與拉伸試驗了解基本機械性質,以缺口拉伸試驗針對銲道缺口破裂韌性分析,利用疲勞裂縫成長試驗探討疲勞特性,再輔以各試片破斷面之SEM微觀分析做更進一步判斷。
  實驗結果顯示,電漿電弧銲件可獲得較佳之硬度、拉伸延性表現;於硬度、拉伸強度、拉伸延伸性及缺口韌性上,母材直接施銲搭配銲後淬火及兩小時450℃回火之試片,可消除回火軟化並使銲件整體組織均質化,擁有最佳的綜合表現;就疲勞裂縫成長特性上,電漿電弧銲件試片之過度回火區有最出色之延遲裂縫成長能力,單就熔融區來比較,也於各參數試驗試片中有最佳抵抗疲勞裂縫成長能力。
In this research, the mechanical properties, notch fracture toughness and fatigue properties of the D6AC ultrahigh-strength low alloy steel (HSLA) gas tungsten arc weldment and plasma arc weldment, which undergone various heat treatment were investigated by microhardness test, tensile test, notch tensile test, fatigue crack propagation test; also carried off metallographic by optical microscope (OM), the nature of fracture surface by scanning electron microscope (SEM).
Results revealed that the plasma arc weldment, showed the better hardness and tensile ductility than gas tungsten weldment. The specimen, welded on as-received plate undergone quenching and 450℃ tempering for 2 hours, by eliminating the overtempering soft zone, performed the best comprehensive properties except the ability for resist fatigue crack propagation. The portion of the overtempering zone of plasma arc weldment has the best fatigue crack propagation resistant ability of all fatigue specimens.
目 錄
中文摘要………………………………………………………………..I
英文摘要…………………………………………………………….…II
誌謝…………………………………………………………………....III
目錄………………………………………………………………...…..V
圖索引………………………………………………………………....IX
表索引……………………………………………………………....XVII
第一章 前言………………………………………………..……..….1
第二章 文獻回顧…………………………………………………....3
2-1 D6AC簡介……………………………………………..….3
2-1-1 超高強度鋼…………………………………….…...…..3
2-1-2 D6AC超高強度鋼………………………………….……4
2-1-3 D6AC銲接特性………………………………….…..…..7
2-1-4 D6AC熱處理特性……………………………….…....…9
2-1-5 氫脆對材料機械性質的影響…………………..….......11
2-2 惰氣鎢極電弧銲與電漿銲接…………………………..…15
2-2-1惰氣鎢極電弧銲……………………………..…....……15
2-2-2 電漿電弧銲接…………………………………..….......15
2-3 疲勞裂縫成長試驗……………………………………...…......18
2-3-1 顯微結構對疲勞裂縫成長的影響………………….....22
第三章 實驗方法………………………………...…….……….…..24
3-1實驗材料………………………………………………….….…25
3-2銲接製程……………………………………………....…….….26
3-2-1惰氣鎢極電弧銲接…………………………….…...…..27
3-2-2電漿電弧銲接……………………………………….….29
3-3熱處理程序……………………………………………....……..30
3-4機械性質測試……………………………………………….….32
3-4-1硬度量測………………………………………………..32
3-4-2拉伸試驗…………………………………………...…...32
3-4-3缺口拉伸試驗…………………………………………..32
3-4-4疲勞裂縫成長試驗………………………………...…...33
3-5金相顯微組織觀察……………………………………………..39
3-6 SEM破斷面觀察………………………………………………..39
第四章 結果與討論…………………………………….....…40
4-1 金相組織…………………………………………………….....40
4-1-1 母材經熱處理之金相組織…………………………….40
4-1-2 母材直接施銲之銲件金相組織……………………….40
4-1-3 銲後回火銲件之金相組織…………………………….41
4-1-4 銲後淬火及450℃兩小時回火銲件之金相組織…......42
4-2 硬度試驗……………………………………………………….54
4-2-1 銲前熱處理對硬度的影響…………………………….56
4-2-2 銲後熱處理對硬度的影響…………………………….57
4-3 拉伸試驗……………………………………………………….64
4-4 缺口拉伸試驗………………………………………………….78
4-4-1 母材直接施銲之銲件缺口拉伸破斷面……………….79
4-4-2 銲後450℃兩小時回火對銲件缺口拉伸破斷面之
影響…………………………………………………….80
4-4-3 不同銲後回火溫度對銲件缺口拉伸破斷面之影響….80
4-4-4 銲後淬火及450℃兩小時回火對銲件缺口拉伸
破斷面之影響…………………………………...……..81
4-5 疲勞裂縫成長試驗…………………………………………….98
4-5-1 母材經惰氣鎢極電弧銲接之疲勞破斷面…………....100
4-5-2 母材經電漿電弧銲接之疲勞破斷面…………………102
4-5-3 銲件經銲後淬火及450℃兩小時回火之疲勞破斷面.103
4-6 四種銲接製程的比較……………………………………...….121
4-6-1硬度比較……………………………………………….121
4-6-2拉伸強度比較…………………………….……………122
第五章 結論………………………………………..………..127
第六章 未來研究方向………………………………………………129
參考文獻………………………………………………..……………..130
1.Joseph R. Davis, “Ultrahigh-strength steels”, Metals Handbook, tenth edition, ASM International (1990).                         
2. W.M. Garrison, Jr., “Ultrahigh-Strength Steels for aerospace applications”, JOM, May (1990).
3. Kenneth Notvest, “Effect of Thermal Cycles in Welding D6Ac Steel, Good correlation is obtained between resistance to cracking and weld ductility for any given weld thermal cycle”, Welding Journal, pp.173-177, April (1966).
4. H. I. McHenry, J. C. Collins, and R. E. Key, “Design and Fabrication of D6AC Steel Weldments for Aircraft Structures”, Welding Journal, pp.991-1000, December (1967).
5. A.A. Baker, R.J. Chester, M.J. Davis, J.D. Roberts, J.A. Retchford, “Reinforcement of the F-111 wing pivot fitting with a boron/epoxy doubler system-materals engineering aspects”, Composites, Vol. 24, No. 6, pp. 551-521 (1993).
6. P. K. Liaw, M.G. Peck, G. E. Rudd, “Fatigue crack growth behavior of D6AC space shuttle steel”, Engineering facture mechanics, Vol. 43, No. 3, pp. 379-400 (1992).
7. T.L. Chang, L.W. Tasy, C. Chen, “Influence of gaseous hydrogen on the notched tensile strength of D6AC steel”, Materials Science and Engineering A316, 153-160 (2001).
8. W. H. Kearns, “Metals and Their Weldability”, Welding Handbook, Seventh edition, Vol. 4 (1984).
9. H. I. McHenry, J. C. Collins, and R. E. Key, “Electron Beam Welding of D6AC Steel”, Welding Journal, 45 (9), Research Suppl., 419s-425s (1966).
10. H. I. McHenry, J. C. Collins, and R. E. Key, “Electron Beam Welding of D6AC Steel in the Heat-Treated Condition”, Welding Journal, 46 (8), Research Suppl., 337s-342s (1967).
11. L.W. Tsay, C.S. Chung and C. Chen, “Fatigue crack propagation of D6AC laser welds”, Int. J. Fatigue, Vol. 19, No. 1, 25-31 (1997)
12. R. L. O’Brien, Welding handbook, Eighth edition, Vol. 2 (1996).
13. Grant Ken Hichen, “Gas-Tungsten Arc Welding”, Metals handbook, 10th edition (1990).
14. Imao Tamura, Chiaki Ouchi, Tomo Tanaka, Hiroshi Sekine, Thermomechanical Processing of High Strength Low Alloy Steel, Butterworths, (1988).
15. Gordon L. Peterman, “Aus-Bay Quenching: High Strength without Distortion”, Welding Journal, Feb, (1966).
16. M Jahazi, G. Ebrahimi, “The influence of flow-forming parameters and microstructure on the quality of a D6ac steel”, Journal of materials processing technology, 103, 362-366 (2000)
17. J. Y. Mann, “The effects of very dry and fully water saturated air environments on the fatigue life of D6AC steel under constant and variable amplitude loading sequences”, Corrosion, Vol. 35, No. 10, Oct, 465-471 (1979).
18. John F. Hildebrand, “Cadmium embrittlement of high strength, low alloy steels at elevated temperatures”, Materials protection and performance, Vol. 12, No. 9, September (1973).
19. Wyatt Swaim, “Gas tungsten arc welding made easy”, Welding Journal, Vol. 77, No. 9, Sep., 51-52 (1998).
20. Bob Irving, “The challenge of welding heat-treatable alloy steels”, Welding Journal, Vol. 74, No. 2, Feb., 43-48 (1995).
21. J. R. Still, “Welding of AISI 4130 and 4140 steels for drilling systems”, Welding Journal, Vol. 76, No. 6, Jun., 37-42 (1997).
22. By The welding institute, Guide to the metallurgy of welding and weldability of low carbon microalloyed hot rolled steels, document IIS/IIW-843-87 (1987).
23. R. Gibala, R.F. Hehemann, Hydrogen embrittlement and stress corrosion cracking, ASM (1992).
24. Richard W. Hertzberg, Deformation and fracture mechanics of engineering materials, third edition, John Wiley and Sons (1989).
25. Sindo Kou, Welding Metallurgy, (1987)
26. N. Eliaz, A. Shachar, B. Tal, D. Eliezer, “Charateristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittement in high-strength steels”, Engineering Failure Analysis, 9, pp. 167-184 (2002).
27. H. Liebowitz, Fracture, An advanced treatise, volume VI, Fracture of metals, AP, (1969).
28. Ian D. Harris, “Plasma Arc Welding”, Metals handbook, 10th edition (1990).
29. V A Malakhovskii, V A Stikhin, V G Krutikhovskii, Yu A Popkov, “Development of a plasma and technique for plasma welding high-strength steel”, Welding production, Vol. 32, No. 1, Jan. , pp.17-20 (1995).
30. Jukka Martikainen, “Conditions for achieving high-quality welds in the plasma-arc keyhole welding of structural steel”, Journal of materials processing technology, 52, pp.68-75 (1995).
31. G. G. Chell, Development in fracture mechanics-2, The Mechanics and Mechanisms of Fracture in Metals, Applied science publishers (1981).
32. ASM Handbook, Fractography, ASM, Vol. 12 (1987).
33. Robert E. Reed-Hill, Reza Abbaschian, Physical metallurgy principles, International Thomson Publishing, third edition (1996).
34. ASM Handbook, Failure Analysis and Prevention, ASM, Vol. 11 (1986).
35. Harry Chandler, Heat Treater’s Guide, Practices and Procedures for Irons and Steels, ASM (1995).
36. ASTM E8M, “Standard test methods for tension testing of metallic materials”, ASTM (1990).
37. ASTM E647, “Standard test method for measurement of fatigue crack growth rates”, ASTM (2000).
38. J.N. Dupont and A.R. Marder, “Thermal Efficiency of Arc Welding Processes”, Welding Journal, Dec. , 406s-416s (1995).
39. [網頁]:metal suppliers online, 8.23.02 (2004).
40. George Krauss, Principle of Heat Treatment of Steel, ASM (1980)
41. Woei-Shyan Lee, Tzay-Tian Su, “Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions”, Journal of materials processing technology, 87, pp. 198-206 (1999).
42. G. C. Sih, Mechanics of fracture, Stress analysis of notch problems, Noordhoff international (1978).
43. T.L. Anderson, Fracture Mechanics, Fundamentals and Applications, CRC Press (1991).
44. Jiun-Ren Hwang and Hsiu-Hung Chang, “Study on threshold fatigue crack growth characteristics of electron beam welding in AISI 4130 steel”, Engineering Fracture Mechanics, Vol. 45, No. 4, pp. 519-527 (1993).
45. Chien-Chun Wang, Yih Chang, “Effect of postweld treatment on the fatigue crack growth pate of electron-beam-welded AISI 4130 steel”, Metallurgical and materials transactions A, Vol. 27A, Oct., pp. 3162-3169 (1996).
46. C.C. Huang, Y.C. Pan, T.H. Chuang, “Effects of post-weld heat treatment on the residual stress and mechanical properties of electron beam welded SAE 4130 steel plates”, Journal of materials engineering and performance, Vol. 6, Feb. , pp. 61-68 (1997).
47. Ji-Liang Doong, Jing-Ming Chi, Jiun-Ren Hwang, “Effect of electron beam welding on fatigue crack growth rate in AISI 4130 steel”, Fatigue Fract. Engng. Mater. Struct. Vol. 13, No. 3, pp. 253-261 (1990).
48. Ji-Liang Doong, Jing-Ming Chi, Yen-Hung Tan, “Fracture toughness behaviour AISI 4130 steel of electron beam welding”, Engineering fracture mechanics, Vol. 36, No. 6, pp. 999-1006 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔