(3.235.25.169) 您好!臺灣時間:2021/04/17 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊昆斌
研究生(外文):KunBin Chuang
論文名稱:蒸氣養護對不同爐石添加量自充填混凝土熱學性質及工程性質之研究
論文名稱(外文):Study of Steam Curing on the Thermal Properties and Engineering Properties of Self-Compacting Concrete with Various Slag Additions
指導教授:張大鵬
指導教授(外文):Ta-Peng Chang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:170
中文關鍵詞:熱傳導係數自充填混凝土爐石蒸氣養護
外文關鍵詞:thermal conductivityself-compacting concreteslagsteam curing
相關次數:
  • 被引用被引用:12
  • 點閱點閱:459
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本研究以熱線法預埋埋入加熱棒加熱方式,探討不同養護條件下及不同爐石取代量之自充填混凝土,於凝結期間之熱傳導係數變化及工程性質。本研究針對三種不同的爐石取代量(0%,20%,40%),以三種不同養護條件(常溫養護,養護50℃,養護70℃)下,了解不同爐石添加量對混凝土熱傳導係數的影響;最後再探討不同養護條件及不同配比之自充填混凝土工程性質及凝結期間之熱傳導行為。
研究結果顯示: (1) 當28天齡期以後,對於所有不同爐石取代組,蒸氣養護均降低熱傳導係數(2)在常溫養護下對於所有齡期,20%爐石取代量均具有最高之熱傳導係數;在養護50℃下對於所有齡期,40%爐石取代量均具有最高之熱傳導係數;在養護70℃下對於28天以後齡期,20%爐石與40%爐石之熱傳導係數非常接近(3)在56天齡期時,20%爐石取代量比未添加爐石組,在常溫養護下增加59.04% ,在養護50℃下減少7.39% ,在養護70℃下減少40.29% 之熱傳導係數;而40%爐石取代量比未添加爐石組,在常溫養護下增加33.48% ,在養護50℃下增加55.86% ,在養護70℃下減少41.83%之熱傳導係數(4)常溫養護下,40%爐石取代量能獲得最高之強度,在蒸氣養護下以20%爐石取代量能獲得最高之強度,顯示常溫養護下,爐石量愈多對晚期強度有很大貢獻,對於蒸氣養護下,以20%爐石取代量能獲得最佳之自癒效果。
This research used the Hot Wire Method by embedding a thermal needle probe to a hole of concrete cylinder to study the effects of steam curing on the thermal properties and engineering properties of self-compacting concrete with three kinds of slag additions condition (0%, 20%, and 40%). Subsequently, the effects of various slag additions on the thermal conductivity of concrete together with three kinds of curing condition (normal curing, steam curing 50℃, steam curing 70℃) were investigated. Finally, the effects of various curing conditions and various compositions on the engineering properties and thermal conducting behavior at setting stage of self-compacting concrete were studied.
Experimental results show that (1) After 28 days, for sets of 0%, 20%, 40% slag addition, thermal conductivity decreases by steam curing; (2) For concrete specimens at all ages, under normal curing condition, the set of 20% slag addition has the maximum value of thermal conductivity. Under steam curing 50℃ condition, the set of 40% slag addition has the maximum value of thermal conductivity. After 28 days, under steam curing 70℃ condition, the value of thermal conductivity of the set of 20% slag addition is similar to the set of 40% slag addition; (3) The coefficient of thermal conductivity increases by 59.04%(normal curing), decreases by 7.39%( steam curing 50℃), and decreases by 40.29%(steam curing 70℃) for the set of 20% slag addition on the 56-day age. The coefficient of thermal conductivity increases by 33.48 %( normal curing), increases by 55.86 %( steam curing 50℃), decreases by 41.83 %( steam curing 70℃) for the set of 40% slag addition on the 56-day age; (4) Under the normal curing, concrete cylinder with 40% slag addition has the maximum compressive strength. Under the steam curing, concrete cylinder with 20% slag addition has the maximum compressive strength. Results show that under normal curing, the higher the slag addition is, the higher its long-term compressive strength will be. Under steam curing, the set of 20% slag addition obtains the best self-curing capability.
中文摘要…………………………………………………………… Ⅰ
英文摘要…………………………………………………………… Ⅱ
目錄………………………………………………………………… Ⅲ
表目錄……………………………………………………………… Ⅹ
圖目錄……………………………………………………………… ⅩⅢ
第一章 緒論……………………………………………………… 1
1-1 研究動機…………………………………………………… 1
1-2 研究目的…………………………………………………… 2
1-3 研究方法…………………………………………………… 3
1-4 研究範圍與流程…………………………………………… 3
第二章 文獻回顧………………………………………………… 5
2-1 自充填混凝土……………………………………………… 5
2-1-1 何謂高性能混凝土……………………………………… 5
2-1-2 何謂自充填混凝土……………………………………… 6
2-1-3 自充填混凝土之配比特性……………………………… 7
2-1-4 自充填混凝土之力學性質……………………………… 10
2-2 爐石在混凝土上之應用及影響…………………………… 11
2-2-1 爐石之來源與用途……………………………………… 11
2-2-2 爐石的化學成分及物理性質…………………………… 12
2-2-3 爐石在混凝土中的卜作嵐反應………………………… 13
2-2-4 爐石對新拌混凝土工作性之影響……………………… 14
2-2-5 爐石對硬固混凝土力學性質之影響…………………… 16
2-3 混凝土的熱學性質………………………………………… 17
2-3-1 混凝土之比熱…………………………………………… 18
2-3-2 混凝土之熱膨脹………………………………………… 18
2-3-3 混凝土之熱擴散………………………………………… 19
2-3-4 混凝土之熱傳導………………………………………… 19
2-3-4-1 混凝土熱傳導係數之量測…………………………… 20
2-3-4-2 混凝土於新拌階段之熱傳導性質…………………… 23
2-3-4-3 混凝土於硬固階段之熱傳導性質…………………… 24
2-3-4-4 混凝土熱學性質之影響因子及預測模式…………… 25
2-3-4-5 有限元素分析混凝土之熱學行為…………………… 26
2-4 卜作嵐材料………………………………………………… 27
2-4-1 卜作嵐材料之基本性質………………………………… 27
2-4-2 卜作嵐材料對混凝土性質之影響……………………… 27
2-4-3 卜作嵐材料對熱傳導係數及比熱之影響……………… 29
2-5 含水量與砂之添加對熱學性質之影響…………………… 30
2-5-1 含水量對熱學性質之影響……………………………… 30
2-5-2 砂的添加對熱學性質之影響…………………………… 31
2-6 常壓蒸氣養護……………………………………………… 32
2-6-1 常壓蒸氣養護之流程…………………………………… 32
2-6-2 超音波、強度及成熟度三者之關係…………………… 33
2-6-3 養護溫度對水化速率之影響…………………………… 34
2-6-4 養護溫度對孔隙之影響………………………………… 35
2-6-5 養護溫度對強度之影響………………………………… 35
2-6-6 養護溫度對滲透性之影響……………………………… 36
2-6-7 養護溫度對彈性模數之影響…………………………… 36
2-6-8 養護溫度對乾縮之影響………………………………… 37
2-6-9 蒸氣養護混凝土之熱學行為…………………………… 38
第三章 試驗計畫………………………………………………… 50
3-1 試驗材料…………………………………………………… 52
3-2 試驗變數…………………………………………………… 53
3-3 試驗項目及方法…………………………………………… 54
3-3-1 組成材料基本性質試驗………………………………… 54
3-3-2 自充填混凝土性質試驗………………………………… 55
3-3-2-1 坍流度試驗…………………………………………… 55
3-3-2-2 流速試驗……………………………………………… 57
3-3-2-3 鋼筋間隙通過試驗…………………………………… 58
3-3-3 自充填混凝土力學性質試驗…………………………… 59
3-4 試驗儀器…………………………………………………… 61
第四章 結果分析與討論………………………………………… 78
4-1 熱傳導係數量測…………………………………………… 78
4-2 試驗條件的影響…………………………………………… 79
4-3 熱傳導係數………………………………………………… 80
4-3-1 一般養護下不同爐石添加量自充填混凝土之熱傳導係數 ………………………………………………………… 80
4-3-1-1 試驗結果……………………………………………… 80
4-3-1-2 結果分析與討論……………………………………… 81
4-3-2 蒸氣養護50℃下不同爐石添加量自充填混凝土之
熱傳導係數……………………………………………… 81
4-3-2-1 試驗結果……………………………………………… 81
4-3-2-2 結果分析與討論……………………………………… 82
4-3-3 蒸氣養護70℃下不同爐石添加量自充填混凝土之
熱傳導係數……………………………………………… 83
4-3-3-1 試驗結果……………………………………………… 83
4-3-3-2 結果分析與討論……………………………………… 84
4-3-4 0%爐石取代之自充填混凝土於不同養護條件下之
熱傳導係數……………………………………………… 84
4-3-4-1 試驗結果……………………………………………… 84
4-3-4-2 結果分析與討論……………………………………… 85
4-3-5 20%爐石取代之自充填混凝土於不同養護條件下之
熱傳導係數……………………………………………… 86
4-3-5-1 試驗結果……………………………………………… 86
4-3-5-2 結果分析與討論……………………………………… 86
4-3-6 40%爐石取代之自充填混凝土於不同養護條件下之
熱傳導係數……………………………………………… 87
4-3-6-1 試驗結果……………………………………………… 87
4-3-6-2 結果分析與討論……………………………………… 87
4-4 抗壓強度…………………………………………………… 88
4-4-1 一般養護下不同爐石添加量自充填混凝土之抗壓強度 88
4-4-1-1 試驗結果……………………………………………… 88
4-4-1-2 結果分析與討論……………………………………… 89
4-4-2 蒸氣養護50℃下不同爐石添加量自充填混凝土之
抗壓強度………………………………………………… 89
4-4-2-1 試驗結果……………………………………………… 89
4-4-2-2 結果分析與討論……………………………………… 90
4-4-3 蒸氣養護70℃下不同爐石添加量自充填混凝土之
抗壓強度………………………………………………… 90
4-4-3-1 試驗結果……………………………………………… 90
4-4-3-2 結果分析與討論……………………………………… 91
4-4-4 0%爐石取代之自充填混凝土於不同養護條件下之
抗壓強度………………………………………………… 92
4-4-4-1 試驗結果……………………………………………… 92
4-4-4-2 結果分析與討論……………………………………… 92
4-4-5 20%爐石取代之自充填混凝土於不同養護條件下之
抗壓強度………………………………………………… 93
4-4-5-1 試驗結果……………………………………………… 93
4-4-5-2 結果分析與討論……………………………………… 94
4-4-6 40%爐石取代之自充填混凝土於不同養護條件下之
抗壓強度………………………………………………… 94
4-4-6-1 試驗結果……………………………………………… 94
4-4-6-2 結果分析與討論……………………………………… 95
4-5 超音波速…………………………………………………… 96
4-5-1 一般養護下不同爐石添加量自充填混凝土之超音波速 96
4-5-1-1 試驗結果……………………………………………… 96
4-5-1-2 結果分析與討論……………………………………… 96
4-5-2 蒸氣養護50℃下不同爐石添加量自充填混凝土之
超音波速………………………………………………… 97
4-5-2-1 試驗結果……………………………………………… 97
4-5-2-2 結果分析與討論……………………………………… 97
4-5-3 蒸氣養護70℃下不同爐石添加量自充填混凝土之
超音波速………………………………………………… 98
4-5-3-1 試驗結果……………………………………………… 98
4-5-3-2 結果分析與討論……………………………………… 99
4-5-4 0%爐石取代之自充填混凝土於不同養護條件下之
超音波速………………………………………………… 99
4-5-4-1 試驗結果……………………………………………… 99
4-5-4-2 結果分析與討論……………………………………… 100
4-5-5 20%爐石取代之自充填混凝土於不同養護條件下之
超音波速………………………………………………… 100
4-5-5-1 試驗結果……………………………………………… 100
4-5-5-2 結果分析與討論……………………………………… 101
4-5-6 40%爐石取代之自充填混凝土於不同養護條件下之
超音波速………………………………………………… 101
4-5-6-1 試驗結果……………………………………………… 101
4-5-6-2 結果分析與討論……………………………………… 102
4-6 電阻係數…………………………………………………… 103
4-6-1 一般養護下不同爐石添加量自充填混凝土之電阻係數 103
4-6-1-1 試驗結果……………………………………………… 103
4-6-1-2 結果分析與討論……………………………………… 103
4-6-2 蒸氣養護50℃下不同爐石添加量自充填混凝土之
電阻係數………………………………………………… 104
4-6-2-1 試驗結果……………………………………………… 104
4-6-2-2 結果分析與討論……………………………………… 104
4-6-3 蒸氣養護70℃下不同爐石添加量自充填混凝土之
電阻係數………………………………………………… 105
4-6-3-1 試驗結果……………………………………………… 105
4-6-3-2 結果分析與討論……………………………………… 105
4-6-4 0%爐石取代之自充填混凝土於不同養護條件下之
電阻係數………………………………………………… 106
4-6-4-1 試驗結果……………………………………………… 106
4-6-4-2 結果分析與討論……………………………………… 106
4-6-5 20%爐石取代之自充填混凝土於不同養護條件下之
電阻係數………………………………………………… 107
4-6-5-1 試驗結果……………………………………………… 107
4-6-5-2 結果分析與討論……………………………………… 107
4-6-6 40%爐石取代之自充填混凝土於不同養護條件下之
電阻係數………………………………………………… 108
4-6-6-1 試驗結果……………………………………………… 108
4-6-6-2 結果分析與討論……………………………………… 108
第五章 結論與建議……………………………………………… 154
5-1 結論………………………………………………………… 154
5-1-1 熱傳導係數……………………………………………… 154
5-1-2 抗壓強度………………………………………………… 156
5-1-3 超音波速………………………………………………… 157
5-1-4 電阻係數………………………………………………… 158
5-2 建議………………………………………………………… 161
論文參考文獻……………………………………………………… 162
1.洪崇嚴,” 台灣地區氣候對自充填混凝土乾縮之影響”,國立台灣大學碩士論文,(1999)(指導教授:陳振川博士)。
2.F. de Larrard, “A Survey of Recent Researches Performed in the French ‘LPC’ Network on High Performance Concrete“, Proc. of Symposium in Lillehammer, Norway, pp.57-67, Jun. (1993).
3.Calspan-UB Reasearch Center, “Mechanical Behavior of High Performance Concrete,” Report C-205, (1988).
4.Henry, G.R.,”ACI Defines High-Performance Concrete,” Concrete International, Vol.21, No.2, pp.56-57, Feb. (1999).
5.陳振川,”高性能混凝土之定義與特性”,結構工程,第9卷,第1期,pp.5-6,民國83年3月。
6.周禮良,” 日本自己充填混凝土之應用現況”, 高性能混凝土新近發展與應用,PP.19-36,台北(1997)。
7.詹穎雯,”自充填混凝土簡介與相關規範”,自充填混凝土產製與施工研討會論文集,台灣營建研究院,PP.1-20,台北(2000)。
8.羅國倫,” 火害後自充填混凝土複合纖維圍束補強之研究”,國立交通大學碩士論文,(2001)(指導教授:趙文成博士)。
9.廖肇昌;羅財怡;游文慧,”自充填混凝土對構件行為影響之探討”,自充填混凝土產製與施工研討會論文集,台灣營建研究院,PP.43-57,台北(2000)。
10.潘昌林;鄭瑞濱;盧榮林;詹穎雯,”自充填混凝土收縮與潛變試驗”,自充填混凝土產製與施工研討會論文集,台灣營建研究院,PP.59-76,台北(2000)。
11.林建良,”礦物摻料及粒料級配對自充填混凝土新拌性質之影響”,國立台灣科技大學營建工程系碩士論文,(2000)(指導教授:張大鵬博士)。
12.陳育聖,”自充填混凝土工程性質研究”,國立台灣大學土木工程研究所碩士論文,(2000)(指導教授:詹穎雯博士)。
13.陳俊欽,”爐石取代部分水泥對流動性混凝土質流性質與工作興之影響”,國立中興大學碩士論文,(2002)(指導教授:顏聰博士)。
14.沈得縣,”高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究”,pp.13~18,國立台灣科技大學博士論文,台北(1991)。
15.李釗,”強塑劑在高性能混凝土上之應用”,高性能混凝土配比設計實作論文集,民國87年。
16.林炳炎,”飛灰、矽灰、高爐爐石用在混凝土中”,民國82年。
17.蕭景槐,”高性能混凝土流動性之研究”,國立台灣大學碩士論文,民國85年。
18.郭文田、李釗,”強塑劑於混凝土應用─強塑劑對水泥材料水化及早期行為之影響”,PP.81~83,台灣營建研究院叢書,民國90年。
19.許貫中,葉一賢、陳秀娘,”強塑劑於混凝土應用─材料因素對於強塑劑最佳用量之影響”,PP.28~33,台灣營建研究院叢書,民國90年。
20.P.C. Aitcin, High Performance Concrete, E & FN SPON, 1998.
21.Shin, Ki-Yeol,; Sang-Baik,Kim ; Jong-Hwan, Kim ; Chung, Mo; Jung, Pyung-Suk, “Thermo-physical properties and transient heat transfer of concrete at elevated temperatures,” Nuclear Engineering and Design, V 212, No1-3, pp.233-241 (2002).
22.Cusson, Danial and Wellington L. Repette, “Early-Age Cracking in Reconstructed Concrete Bridge Barrier Walls,” ACI Material Journal, pp.438~446 (2000).
23.Arshad A. Khan, William D. Cook, and Denis Mitchell, “Thermal Properties and Transient Thermal Analysis of Structural Members during Hydration.” ACI Material Journal, pp.293~446, (1998).
24.Nakamura, Hideaki, Sumio Hamada, Toshio Tanimoto, and Ayaho Miyamoto, “Estimation of Thermal Crack Resistance for Mass Concrete Structure with Uncertain Material Properties,” ACI Structure Journal, pp.509~518 (1999).
25.Liu, Chiu; Meline, Robert; Lee, James N. “Heat removal from mass concrete footing”, Transportation Research Record, No. 1798, 02-2883, pp.39~42 (2002).
26.Brown, T. D, and M. Y. Javaid, ”The Thermal Conductivity of Fresh Concrete,” Materials and Structures, V . 3,No. 18, pp. 416-441 (1970).
27.Mindess. S., and J. F Young, Concrete, Prentice Hall , Englewood Cliffs , N.J. , 1981 .
28.ACI Committee 517, ”Accelerated Curing of Concrete at Atmospheric Pressure,” State-of-the-Art, (ACT 517.2R-20), ACI Manual of concrete Practice, Part 5 (1998).
29.黃兆龍,”混凝土性質與行為”,詹氏書局,台北 (1997)。
30.Lofqvist, B., ”Temperature Effekter I Hardnande Betong, ”Tenkiskt Meddelande Fran Kung1. Vaterfallsstyrelsen Nr22, Stockholm, pp.195 (1946).
31.ACI Committee 308,”Standard Practice for Curing of Concrete, ”American Concrete Institite, Detroit, MI, U.S.A. (1992).
32.邱亮人,” 飛灰對新拌混凝土熱學性質之影響 ”,國立台灣科技大學營建工程系碩士論文,(2000)(指導教授:張大鵬博士)。
33.Kim, Jin Keun, Kook Han, Kim, Joo Kyoung, Yang “Thermal analysis of hydration heat in concrete structures with pipe-cooling system,” Computers and Structures, V 79, No 2, pp.63-171 (2001).
34.ACI Committee 211.1, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” Manual of Concrete Practice, Part 1, pp. 34 (1988).
35.Carslaw, H. S., J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press , London, pp. 261-262 (1959).
36.ASTM C1113-90, “Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique )”, Annual Book of ASTM Standards, Vol. 0408, U.S.A., pp.1394-1398 (1993).
37.ASTM D5334, “Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure”, Annual Book of ASTM Standards, Vol.0408, U.S.A., pp. 1394-1398 (1993).
38.Oberhettinger, F., L. Badii, Table of Laplace Transform, Springer-Verlag, Berlin, Germany, pp. 338 (1973).
39.蘇信宏,” 混凝土凝結期間熱傳導性質與影響 ”,國立台灣科技大學營建工程系碩士論文,(1999)(指導教授:張大鵬博士)。
40.歐書豪,” 礦物摻料及蒸氣養護對不同配比水泥砂漿熱傳導性質之影響 ”,國立台灣科技大學營建工程系碩士論文,(2003)(指導教授:張大鵬博士)。
41.黃兆龍,”硬固混凝土技術教案”,國立台灣工業技術學院,營建工程技術系 (1982)。
42.Kook-Han, Kim; Sang-Eun, Jeon; Jin-Keun, Kim ; Sungchul, Yang “An experimental study on thermal conductivity of concrete”, Cement and Concrete Research, V 33, No 3, pp.363-371 (2003).
43.“Determination of the conductivity of concrete during the early stages of hydration,” G. J. Gibbon and Y. Ballim, Magazine of Concrete Research, V 50, No 3, pp. 229~235 (1998).
44.Galle, C. (DCC DESD/SESD CEA Saclay); J. Sercombe, M. Pin, G. Areier, P. Bouniol, “Behavior of high performance concrete under high temperature (60-450°C) for surface long-term storage: Thermo-hydro-mechanical residual properties,” Materials Research Society Symposium - Proceedings, V 663, pp. 73-80 (2001).
45.CEB/FIP, “Lightweight Aggregate Concrete, ” Longman Inc, New York, N. Y. (1977).
46.Khan, M.I., “Factors affecting the thermal properties of concrete and applicability of its prediction models”, Building and Environment Volume: 37, Issue: 6, June, 2002, pp. 607-614.
47.Kim, Kook-Han; Jeon, Sang-Eun; Kim, Jin-Keun; Yang, Sungchul, “An experimental study on thermal conductivity of concrete”, Cement and Concrete Research Volume: 33, Issue: 3, March, 2003, pp. 363-371.
48.O''Donnell, John J.; O''Brien, Eugene J., “A new methodology for determining thermal properties and modelling temperature development in hydrating concrete”, Construction and Building Materials Volume: 17, Issue: 3, April, 2003, pp. 189-202.
49.De Schutter, G., “Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws”, Computers and Structures Volume: 80, Issue: 27-30, November, 2002, pp. 2035-2042.
50.台灣電力公司電力綜合研究所, “飛灰利用之研究”,台北 (1987)。
51.ACI Committee 266, “Use of Fly Ash In Concrete”, ACI Materials Journal, Vol.84, No. 5, pp.381~409 (1987).
52.Chatterji., A. D. Jensen, N. Thaulow, and P. Christensen , “Studies of Alkali-Silica Reaction Part 3 Mechanisms By Which NaCl and Ca(OH)2 Affect the Reaction,” Cement and Concrete Research, Vol.16, pp. 246~154 (1986).
53.Atis, Cengiz Duran, “Heat evolution of high-volume fly ash concrete”, Cement and Concrete Research, V 32, No 5, pp.751-756 (2002).
54.Fu, X.; Chung, D.D.L., “Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste”, Cement and Concrete Research Volume: 27, Issue: 12, December, 1997, pp. 1799-1804.
55.Xu, Yunsheng; Chung, D.D.L., “Cement of high specific heat and high thermal conductivity, obtained by using silane and silica fume as admixtures”, Cement and Concrete Research Volume: 30, Issue: 7, July, 2000, pp. 1175-1178.
56.Demirboga, Ramazan, “Influence of mineral admixtures on thermal conductivity and compressive strength of mortar”, Energy and Buildings Volume: 35, Issue: 2, February, 2003, pp. 189-192.
57.Demirboga, Ramazan; Gül, Rüstem, “The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete”, Cement and Concrete Research Volume: 33, Issue: 5, May, 2003, pp. 723-727.
58.Nunes dos Santos, Wilson; de Sylos Cintra Jr, Joaquim, “Numerical simulation of the effect of moisture on the thermal conductivity of porous ceramic materials”, Journal of the European Ceramic Society Volume: 19, Issue: 16, December, 1999, pp. 2951-2955.
59.dos Santos, Wilson Nunes, “Effect of moisture and porosity on the thermal properties of a conventional refractory concrete”, Journal of the European Ceramic Society Volume: 23, Issue: 5, April, 2003, pp. 745-755.
60.Xu, Yunsheng; Chung, D.D.L., “Effect of sand addition on the specific heat and thermal conductivity of cement”, Cement and Concrete Research Volume: 30, Issue: 1, January, 2000, pp. 59-61.
61.SOROKA, ”Concrete in Hot Environment, ”Technion-Israel Institute of Technology, Haifa, Israel, pp. 28-31 (1977).
62.Verbeck, George J. and Richard H. Helmuth, “Structures and Physical Properties of Cement Past,” proceeding of the fifth international symposium on the chemistry, Tokyo, pp. 1-32 (1968).
63.楊至弘,”優生混凝土預鑄構件產製自動化研究”,國立台灣科技大學營建工程系碩士論文,(1996)(指導教授:黃兆龍博士)。
64.Swamy , R. N. & G. H. Lambert, “The Microstructure of Lytag Aggregate”, The International Journal of Cement Composites and Lightweight Concrete, Vol.3, No.4 ( 1981 ) .
65.Kjellsen, Knut O, Rachel J. Detwiler, and Odd E. Gjorv,” Backscattered Electron Imaging of Cement Pastes Hydrated at Different Temperature,” Cement and Concrete Research, Vol. 20, No 2, pp. 308-311 (1990).
66.Skalny, Jan and Ivan Odler, “Pore Structure of Calcium Silicate Hydrates,” Cement and Concrete Research, vol. 2, No. 4, pp. 273-400 (1972).
67.Kjellsen, Knut O ; Rachel J. Detwiler and Odd E. Gjorv. “Pore Structure of Plaun Cement Pastes Hydrated ar Different Temperature”, Cement and Concrete Research, Vol. 20, pp.927~933, (1972 ) .
68.Shideler, J.J. and W. H., Chamberlin, “Early Strength of Concrete as Affected by Steam Curing Temperature,” Proc. Am. Concr. Inst., 46, No. 4, pp. 273~283 (1972).
69.Nurse, R. W. and T, Whitaker., “Strength Tests on Steam Cured Concrete, ‘Intern. RILEM Conf., The Problem of Accelerated Units, Moscow (1964).
70.黃奇元, “高溫高壓蒸氣養護混凝土強度衰退原因探討與改善對策”,國立中興大學土木工程研究所碩士論文(1995) (指導教授:閰嘉義 博士 )。
71.黃兆龍, “高等混凝土技術” (1986)。
72.ACI Committee 211.1,“Standard Practice for Selecting Proportions for Normal, Heavy weight, and Mass Concrete,” Manual of Concrete Practice, Part 1, p.34 (1988).
73.ACI 216R-81, “Guide for Determining the Fire Endurance of Concrete Elment,”(1987).
74.Cruz,C. R., “Elastic Properties of Concrete at High Temperatures,” Journal of PCA Research and Development Laboraties, Vol.8, No.1, pp.37~45 (1966).
75.Anderberg, Y. and S. Theleanderesson, “Division of Structure Mechanics and Concrete Construction,” Bulletin 54, Lund Institute of Technology, Lund, Sweden (1976).
76.林銅柱、沈得縣,” 高性能混凝土耐火性能之探討 ”,內政部建築研究所籌備處專題研究計畫成果報告(1995)。
77.Hanson, J. A., “Prestress Loss as Affected by Type of Curing,” J. Prestressed Concr. Inst., 9, No.2, pp. 69~93,(1964).
78.Ozkul, M. Hulusi,” Efficiency of accelerated curing in concrete”, Cement and Concrete Research, Volume: 31, Issue: 9, September, 2001, pp. 1351-1357.
79.Ho, D.W.S.; Chua, C.W.; Tam, C.T. “Steam-cured concrete incorporating mineral admixtures”, Cement and Concrete Research Volume: 33, Issue: 4, April, 2003, pp. 595-601.
80.Erdem, T.K.; Turanli, L.; Erdogan, T.Y. “Setting time: An important criterion to determine the length of the delay period before steam curing of concrete”, Cement and Concrete Research Volume: 33, Issue: 5, May, 2003, pp. 741-745.
81.日本土木學會,「高流動性混凝土施工指針」,July 1998。
82.黃兆龍,「由高雄85層及T&C Tower論HPC材料選擇及機能」,高性能混凝土研發及應用研討會論文集(1994)。
83.Okamura, H. and K. Ozawa, “Self-Compacting High Performance Concrete,” Structure Engineering International 4/96, pp. 269-270, 1996.
84.Kasai, Y.,“Comparison of Blast Furnace Slag Cement and Fly Ash Cement in Japan”,高爐石做為水泥熟料應用於混凝土研討會論文集,(1986)。
85.柴希文;謝明宏,”自充填混凝土配比設計與施工” ,自充填混凝土產製與施工研討會論文集,台灣營建研究院,PP.31-41,台北(2000)。
86.Harris Benson, Eurasia, U.S.A. (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔