( 您好!臺灣時間:2021/04/12 22:04
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):A Study of Optimization for EBL Parameters on the Moth-Eye Effects of Anti-Reflection Matrix Structure
外文關鍵詞:Moth-eye effectsAnti-reflection matrixElectron Beam Lithography (EBL)Taguchi experimental design method
  • 被引用被引用:3
  • 點閱點閱:543
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
抗反射在科學或生活上的應用非常廣泛,在可見光波段的抗反射應用如太陽能電池,可提高太陽能利用效率。稱為” 蛾眼 ( Moth-eye ) 效應” 的抗反射結構由觀察蠶、娥等鱗翅類生物的眼角膜得到,研究人員觀察蛾眼表面呈現規則排列的突起結構,證實能減少光的反射。研究指出,當此結構深度與入射波長之比值約為0.4時,有最佳的抗反射效果。過去已有利用光學微影技術製作出此抗反射結構陣列,但光學微影有其物理與技術上的限制,且在此結構製作上需要較多程序;或以高分子材料塗佈,以化學方法製造孔洞,藉孔洞產生抗反射效果,唯此法所生孔洞的大小型態各異,尺寸控制不易。本研究改善過去方法,利用電子束微影 ( Electron Beam Lithography, EBL ) 技術,有別於其他製作技術,電子束微影能提供更精確的尺寸控制且簡化的製作程序,藉由光阻劑塗佈,經歷曝光程序產生抗反射結構,最後在以原子力顯微鏡量測抗反射結構的尺寸,得到蛾眼效應之抗反射結構陣列。研究中並針對電子束製程參數,討論不同參數對製作此抗反射結構的影響,結合田口式實驗規劃法預測抗反射結構的最佳製程控制參數,建立電子束微影參數操作資料庫,以適用不同入射光波段的抗反射結構應用需求。
The application of anti-reflection is very popular in everyday life. For instance, the anti-reflection from visible light wave bands could be applied to “Solar Cell” and be used to raise the rate of complete power consumption. “Moth-eye” Effects is one of the good examples, which is found through studying the corneas of silkworms and moths. When the regular protruding surface of the corneas is observed, the anti-reflection and the ability to absorb the light can be proved. In addition, this property produces the ability to identify the directions under a dark environment as well.
The study of “Moth-eye” Effects was pointed out that the effect of anti-reflection can be optimized when the ratio between the depth ( d- from the cornea surface to the bottom ) and the wavelength ( λ- the incidence ) is 0.4. In the past, the anti-reflection matrix was made through applying Optical Lithography ( OL ). However, OL is limited with physic and technology, and requires a complex procedure to produce anti-reflection matrix.
This study applies Electron Beam Lithography ( EBL ) to produce the anti-reflection matrix of Moth-eye Effects, which matrix is different from others. The difference mainly results from that EBL could provide accuracy in controlling size and offer a simple production procedure. Meanwhile, the research also discusses how different parameters affect the structure of anti-reflection. The study combines Taguchi Experimental Design Method so that the most adequate parameters could be predicted and the parameters’ database could be set-up and applied to different anti-reflection needs of wave bands.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖索引 VII
表索引 IX
第1章 前言 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 3
1.4 研究大綱 4
第2章 研究理論 5
2.1 抗反射效應 5
2.2 近接效應 8
第3章 抗反射結構製作 11
3.1 光阻劑塗佈 11
3.2 曝光 13
3.3 原子力顯微鏡 16
第4章 田口式實驗規劃與驗證 17
4.1 田口方法規劃步驟 17
4.2 品質計量法 19
4.3 變異數分析 19
4.3.1 實驗誤差評估 20
4.3.2 因子重要性測試 21
4.3.3 因子貢獻度分析 21
4.4 確認實驗 22
第5章 抗反射結構實作 23
5.1 樣本製備 23
5.2 電子束微影操做設定 25
5.3 顯影及檢測製程 27
第6章 結果與討論 28
6.1 實作參數規劃 28
6.1.1 加速電壓值 28
6.1.2 電子束尺寸 29
6.1.3 曝光劑量 30
6.1.4 點圖形間距 30
6.2 操作步驟 31
6.3 實作數據分析 32
第7章 結論 40
參考文獻 43
1.Sönke Johnsen, “Hidden in plain sight:The ecology and physiology of organismal transparency,” Biological Bulletin, Vol. 201, 301-318 (2001).
2.Raguin D. H. and Morris G. M., “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Applied Optics, Vol. 32, No.14, 2582-2598 (1993).
3.Grann E. B., Moharam M.G. and Pommet D. A. “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” Optical Society of America, Vol. 12, No.2, 333-339 (1995).
4.Stefan Walheim, Erik Schäffer, Mlynek Jürgen and Ullrich Steiner, “Nanophase-Separated polymer films as high-performance antireflection coatings,” Science, Vol. 283, 520-523 (1999).
5.Reflexite Display Optics Corporation, Avon, CT, USA.
6.Motamedi M. E., Southwell W. H., and Gunning W. J. “Antireflection surfaces in silicon using binary optics technology,” Applied Optics, Vol. 31, No.22 (1992).
7.Raguin D. H. and Morris G. M., “Antireflection structured surfaces for the infrared spectral region,” Applied Optics, Vol. 32, No.7 (1993).
8.Richard Wolfson and Pasachoff J. M., “Physics,” HarperCollins College Publishers, New York (1995).
9.Bernhard, C. G., “Structural and functional adaptation in a visual system,” Endeavour, Vol. 26, 79 (1967).
10.Clapam P. B. and Hutley M. C., “Reduction of lans reflexion by Moth eye principle,” Nature, Vol.244, 281-282 (1973).
11.Hadobás K., Kirsch S., Carl A., Acet M. and Wassermann E. F., “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11, 161-164 (2000).
12.Kyser D. F. and Viswanathan N. S., "Monte Carlo simulation of spatially distributed beams in electron-beam lithography," J. Vac. Sci. Technol. 12(6), 1305-1308 (1975).
13.Kruger J. B., Rissman P., and Chang M. S., “Silicon transfer layer for multilayer resist systems,” J. Vac. Sci. Technol. 19, 1329 (1981).
14.Owen G. andRissman P., "Proximity effect correction for electron beam lithography by equalization of background dose," J. Appl. Phys. 54 (6), pp.3573-3581 (1983).
15.Parikh M., "Self-consistent proximity effect correction technique for resist exposure (SPECTRE)," J. Vac. Sci. Technol. 15(3), pp. 931-933 (1978).
16.Jacob J., Lee S., McMillan J., and MacDonald N., “Fast proximity effect correction: An extension of PYRAMID for circuit patterns of arbitrary size,” J. Vac. Sci. Technol. B10 (6), pp.3077-3082 (1992).
17.Chang T. H. P., “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12, 1271 (1975).
18.Michael Quirk and Julian Serda, “Semiconductor Manufacturing Technology,” Prentice Hall, (2001).
19.Mohamed Henini, “EBL opening up the nano-world,” III-Vs Review., Vol. 12 No.6, (1999).
20.National Technology Roadmap for Semiconduction, Semiconduction Industry Association, San Jose, CA (1997).
21.陳啟東,”淺談微影蝕刻技術” 物理雙月刊,二十一卷四期 (1999).
22.柯富祥,”繪製奈米級的圖案” Science monthly Vol. 33, No. 7,576-579 (2002).
23.Pramanik D., Weling M., and Zhou L., “Using AFM to develop sub-µm multilevel metallization processes,” Solid State Technology., 37, pp.79-86, (1994).
24.Burggraaf B., “Pursuing advanced metrology solutions,” Semi- conductor Int., 17, pp.62-64, (1994).
25.Xiao J. Li, S., Zhao A., and Li D., “Inspecting of the microprofile and defects of optical surfaces using the atomic force microscope,” Proc. SPIE., 3422, pp.270-273, (1998).
26.Rodgers M. R., Wendman M. A., and Yashar F. D., “Application of the atomic force microscope to integrated circuit failure analysis,” Microelectron. Reliab., 33, pp.1947-1956, (1993).
27.Neubauer G. and Dass M. L. A., “Imaging VLSI cross sections by atomic force microscopy,” Proc. IEEE Reliability Physics., pp.299-303, (1992).
28.Wilder K., Quate C. F., Singh B., and Arnold W. H., “Cross sectional imaging and metrology using the atomic force microscope,” J. Vac. Sci. Technol. (B)14, pp.4004-4008, (1996).
29.Eunsung Seoa, Bo Kyung Choib, Ohyun Kima, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectronic Engineering 53, 305-308 (2000).
30.李輝煌,”田口方法-品質設計的原理與實務”, 高立圖書有限公司 (2003).
31.蘇朝墩,”品質工程, ” 中華民國品質學會 (2002).
第一頁 上一頁 下一頁 最後一頁 top
1. 侯作珍〈藍星詩社對現代詩發展的貢獻—以五0年代三次論戰為探討中心〉《文學新鑰》創刊號,2003年7月
2. 李鴻瓊〈空間、旅行、後現代:波西亞與海德格〉《中外文學》26卷4期,1997年9月
3. 翁文嫻〈論台灣新一代詩人的變形模式〉《中山人文學報》13期,2001年10月
4. 林燿德〈羅智成的禁域—讀「夢的塔湖書簡」〉《文訊》31期,1987年8月
5. 張靄珠〈夢境邊緣的語言—羅智成詩集「光之書」讀後〉《出版與研究》45期,1979年5月
6. 許悔之〈占領一座電台評羅智成的《寶寶之書》〉《聯合文學》6卷3期,1990年1月
7. 許麗芳〈試論莊、荀二子天人觀念之異同〉《孔孟月刊》34卷5期
8. 陳淑美〈隨我走天涯—旅行文學正發燒〉《光華》23卷6期,1998年6月
9. 曾淑美〈你讀過羅智成的詩嗎?〉《藍星詩學》1999端午號,1999年6月
10. 黃居仁〈時間如流水—由古典詩歌中的時間用語談到中國人的時間觀〉《中外文學》9卷11期,1981年4月
11. 楊四平〈李魁賢與里爾克論詩歌精神的故事〉《笠詩社》227期,2002年2月
12. 路況〈表象世界的思維者—讀陳克華詩的一些聯想〉《現代詩》復刊11期,1987年12月
13. 廖玉蕙〈論柳敬亭及其說書藝術〉《中正嶺學術研究集刊》第11集,1991年6月
14. 劉紀蕙〈女性的複製:男性作家筆下二元化的象徵符號〉《中外文學》18卷1期,1989年6月
15. 蔣勳〈獨白—評羅智成的「夢的塔湖書簡」〉《聯合文學》34期,1987年8月
系統版面圖檔 系統版面圖檔