(3.238.174.50) 您好!臺灣時間:2021/04/18 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪士傑
研究生(外文):Shi-jie Hong
論文名稱:混合溶劑效應對聚乙烯醇溶液性質及凝膠化行為之影響
論文名稱(外文):Effects of mixed solvent on solution properties and gelation behavior of polyvinyl alcohol
指導教授:洪伯達
指導教授(外文):Po-Da Hong
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:高分子工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
中文關鍵詞:分子交互作用選擇性吸附溶液性質凝膠化行為聚集行為溶劑混合物
相關次數:
  • 被引用被引用:0
  • 點閱點閱:469
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要討論藉由改變混合溶劑DMSO/water之莫耳分率,對PVA/DMSO/water三成份高分子溶液系統之稀薄溶液性質及凝膠化行為之影響。首先以極限黏度分析獲得了有關高分子和各溶劑間交互作用力之表觀訊息,由結果得知DMSO對PVA之親和性較水佳,而在X1 (DMSO莫耳分率)約0.28時,有最差之親和性。對此溶液系統進一步分析,考慮到大量的DMSO/(water)2 complex生成並以熱力學穩定存在,其對各成份之交互作用所帶來之影響,因此進行修正Read所提適用於較弱交互作用力系統之理論式,合理的計算出在X1=0.33處出現曲線之反轉,此時PVA沒有溶劑優先的吸附作用,溶劑的去吸附現象將發生,低於和高於此分率則能各自選擇性吸附不同之溶劑,因此造成不同的排斥體積效應,並反映出coil尺寸在溶液中之變化,此時在稀薄溶液下高分子coil尺寸將能預估出。本研究更進一步的以動態光散射求出單一coil尺寸隨組成分率之變化,證實同極限黏度在X1=0.28處有最小的Rh,kd值,反應在此溶劑組成分率對PVA有最差之親和性,而在X1=0.33處則有最大和最小之溶劑黏度和擴散係數值,其對應最大量穩定溶劑complexes生成之組成,同時應證理論選擇性吸附之正確性。以此依據,對其在更高濃度凝膠能生成之範圍進行研究,發現其在最差親和性,X1=0.28處的凝膠化最快,而在X1=0.33以上,去吸附及聚集現象開始減弱,此時凝膠化速度減慢且難以生成,反映先前理論所述的PVA吸附較多之DMSO而造成高分子與溶劑間親和性之增加。隨著PVA濃度之增加,觀察到支配凝膠化動力學轉變之現象,以此動力學轉變濃度 可劃分出凝膠化動力學的控制機制不同之領域。
In this thesis, the solution properties of PVA were first investigated in a wide range of solvent compositions for the PVA/DMSO/water ternary systems. Ubbelohde viscometer was first used to get some apparent information on the polymer-co-solvent interaction in the present work. The viscometric result showed that the affinity to PVA for DMSO is higher than that for water. The original Flory-Huggins expression for free energy of mixing, which is traditionally used to analyze the experimental results in mixed solvents, led to a very poor agreement between theoretical and experimental data. Therefore, we modified Read’s formalism, which is generally applied to the weaker interaction systems, to calculate preferential adsorption coefficients, αa, when the solvent complexes are comparatively stable in the present systems. The theoretical preferential adsorption coefficients could be calculated for discussing the results of polymer-co-solvent interaction (cC3). The inversion of the preferential adsorption was confirmed for a mixture of a marginal solvent (water) with a good one (DMSO) at DMSO mole fraction (X1) = 0.33. For X1<0.33 and X1>0.33, PVA chains preferentially adsorb water molecules and DMSO molecules, respectively. Typically, this co-solvent mixture could form hydrogen bonded DMSO / (water) 2 complexes, involving one DMSO and two water molecules. Besides, the measurements of dynamic light scattering (DLS) were carried out to elucidate the effect of molecular interactions on the properties of PVA dilute solutions. DLS analysis could provide many information on the properties of diluted solution such the average relaxation rate of a single coil ( ), the hydrodynamic radius (Rh) and the additional dynamic second virial coefficient (Kd) and diffusion coefficient at infinite dilute, D0. All of the results reveal a critical value around X1=0.28~0.33. Finally, a study on the relationship between phase separation and gelation was carried out through kinetic analyses. The present study has primarily focused on such solvent compositions where gelation and liquid-liquid phase separation occur easily (i.e., X1=0.2~0.33). Due to various interactions between PVA and co-solvent mixtures, the gelation behavior is significantly affected by the formation of co-solvent complex.
論文提要內容 ………………………………………………………………………….Ⅰ
ABSTRACT ………………………………………………………………………….....Ⅲ
CONTENTS …………………………………………………………………………….Ⅴ
CHART CATALOGUES ……………………………………………………………......Ⅶ
SYMBOLS TABLE FOR THE THESIS ………………………………………………..Ⅸ
Chapter 1
General Introduction ………………………………………………………………….1
1.1 The phenomenon of cononsolvency ……………………………………………...1
1.2 The Purpose of This Thesis ……………………………………………………….4
Chapter 2
Effects of Co-solvent Complex on Preferential Adsorption Phenomena in Poly(vinyl alcohol ) Ternary Solutions …………………………………………………………...7
2.1 Introduction ………………………………………………………………………...7
2.2 Experimental ……………………………………………………………………….9
2.2.1 Samples ………………………………………………………………………9
2.2.2 Measurements ………………………………………………………………..9
2.3 Results and discussion …………………………………………………………….10
2.3.1 Viscometric analysis…………………………………………………………10
2.3.2 Preferential adsorption phenomena………………………………………….12
2.4 Conclusion ………………………………………………………………………...18
Chapter 3
Dynamic Light Scattering Studies on solution Properties of Poly(vinyl alcohol) /DMSO/H2O Systems………………………………………………………..20
3.1 Introduction ……………………………………………………………………….20
3.2 Experimental ………………………………………………………………………21
3.2.1 Materials …………………………………………………………………….21
3.2.2 Measurements ……………………………………………………………….22
3.3 Results and discussion ……………………………………………………………..23
3.4 Conclusion………………………………………………………………………….31
Chapter 4
Phase Separation and Gelation Behavior in Poly(vinyl alcohol)
Solutions ………………………………………………………………………………….33
4.1 Introduction ………………………………………………………………………....33
4.2 Experimental ………………………………………………………………………..35
4.2.1 Gelation rate …………………………………………………………………..35
4.2.2 Static light scattering……………………………………………………..........35
4.3 Results and discussion ………………………………………………………………36
4.3.1 Gelation kinetics ………………………………………………………………36
4.3.2 Analysis of static light scattering ……………………………………………...42
4.4 Conclusion …………………………………………………………………………..44
Chapter 5
OVERVIEW…………………………………………………………………...46
REFERENCES………………………………………………………………...49
[1] Stokes, W.; Berghmans, H. Journal of Polymer Science: Part B: Polymer Physics, 29, 609, 1991
[2] Hong, P. D.; Huang, H. T. Eur Polym J , 35, 2155, 1999
[3] Hong, P. D.; Chen, J. H. Polymer, 40, 4077, 1999
[4] Winnik, F. M.; Ringsdorf, H.; Venzmer, J. Macromolecules, 23, 2415, 1990
[5] Wolf, B. A.; Willms, M. M. Makromol. chem., 179, 2265, 1978
[6] Schild, H.G.; Muthukumar, M.; Tirrell, D. A. Macromolecules, 24, 948, 1991
[7] Zhang, G.; Wu, C. Physical Review Letters, 86, 822, 2001
[8] Zhang, G.; Wu, C. J. Am. Chem. Soc., 123, 1376, 2001
[9] Pagonis, K.; Bokias, G. Polymer, 45, 2149, 2004
[10] Amiya, T.; Hirokawa, Y.; Hirose, Y.; Li, Y.; Tanaka, T. J Chem Phys, 86, 2375, 1987
[11] Matsuo, M.; Kawase, M.; Sugiura, Y.; Takematsu, S.; Hara, C. Macromolecules, 26, 4461, 1993
[12] Hara, C.; Matsuo, M. Polymer, 36, 603, 1995
[13] Tacx, J. C. J. F.; Schoffeleers, H. M.; Brands, A. G. M.; Teuwen, L. polymer, 41, 947, 2000
[14] Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K. Macromolecules, 32, 7815, 1999
[15] Kanaya, T.; Ohkura, M.; Takeshita, H.; Kaji, K. Macromolecules, 28, 3168, 1995
[16] Kanaya, T.; Ohkura, M.; Kaji, K. Macromolecules, 27, 5609, 1994
[17] Ohkura, M.; Kanaya, T.; Kaji, K. Polymer, 33, 3686, 1992
[18] Takahashi, N.; Kanaya, T.; Nishida, K.; Kaji, K. Polymer, 44, 4075, 2003
[19] Vaisman, I. I.; Berkowitz, M. L. J Am Chem Soc, 114, 7889, 1992
[20] Rowlinson, J. S.; Swinton, F. L. Liquid and Liquid Mixtures (Butter-worths, London, 1982)
[21] Rahman, A.; Stillinger, F. H. J. Am. Chem. Soc., 95, 7943, 1973
[22] Marcus, Y. Solvent Mixtures (Properties and Selective Solvation) (MARCEL DEKKER, INC, New York. BASEL 2002)
[23] Catalan, J.; Diaz, C.; Garcia-Blanco, F. J. Org. Chem. 66, 5846, 2001
[24] Luzar, A.; Chandler, D. J Chem Phys, 98, 8160, 1993
[25] Borin, I. A.; Skaf, M. S. J. Chem. Phys., 110, 6412, 1999
[26] Kirchner, B.; Searles, D. J.; Dyson, A. J.; Vogt, P. S.; Huber, H. J. Am. Chem. Soc., 122, 5379, 2000
[27] Barbara, K.; Markus, R. J. Am. Chem. Soc. 124, 6206, 2002
[28] Schild, H. G.; Muthukumar, M.; Tirrell, D. A. Macromolecules, 24, 948, 1991
[29] Aminabhavi, T. M.; Munk, P. Macromolecules, 12, 607, 1979
[30] Chu, S. G.; Munk, P. Macromolecules, 11, 879, 1978
[31] Huggins, M. L. J Am Chem Soc, 64, 2716, 1942
[32] Yamaura, K.; Hirata, K.; Tamura, S.; Matsuzawa, S. J Polym Sci Polym, Part B: Polym Phys, 23, 1703, 1985
[33] Cowie, J. M. G.; McCrindle, J. T. Eur Polym J, 8, 1185, 1972
[34] Flory, P. J. Principles of Polymer Chemistry, Chapter 12, 13
[35] Pouchly, J.; Zivny, A.; Solc, K. J. Polym. Sci. Part C, 23, 245, 1968
[36] Read, B. E. Trans Faraday Soc, 56, 382, 1960
[37] Hong, P. D.; Huang, H. T. Polymer, 41, 6195, 2000
[38] Simionescu, B.C.; Ioan, S.; Grigorescu, G. Eur. Polym. J., 32, 851, 1996
[39] Nakata, M.; Kaji, A. Macromolecules, 21, 2514, 1988
[40] Klenin, V. J.; Klenina, O. V.; Shvartsburd, B. I.; Frenkel, S. Y. J Polym. Sci.,
44, 131, 1974
[41] Tacx, J. C. J. F.; Schoffeleers, H. M.; Brands, A. G. M.; Teuwen, L. Polymer, 41, 947, 2000
[42] Luzar, A. J Chem Phys, 91, 3603, 1989
[43] Chu, B.,” Laser Light Scattering 2nd ed. “ San Diego: Academic Press, 1991
[44] Berne, B. J.; Pecora, R. Dynamic Light Scattering, 1990
[45] Brown, W. “ Dynamic Light Scattering : The Method and some applications ” Clarendon Press, Oxford, 1993
[46] Vavra, J.; Antalik, J. Polymer, 38, 6281, 1997
[47] Cotts, P. M.; Selser, J. C. Macromolecules, 23, 2050, 1990
[48] Han, C.C.; Ziya Akcasu, A. Polymer, 22, 1165, 1981
[49] Ziya Akcasu A. Polymer, 22, 1169, 1981
[50] Costa, Ricardo O.R.; Freitas, Roberto F.S. Polymer, 43, 5879, 2002
[51] Tanigami, T.; Yano, K.; Yamaura, K.; Matsuzawa, S. Polymer, 36, 2941, 1995
[52] Hong, P. D.; Chen, J. H. Polymer, 39, 711, 1998
[53] Hong, P. D.; Chou, C. M.; Chen, J. H. Polymer, 41, 5847, 2000
[54] Hong, P. D.; Chou, C. M. Polymer, 41, 8311, 2000
[55] Banisil, R.; Lal, J.; Carvalho, B. L. Polymer, 33, 2961, 1992
[56] Tanigami, T.; Suzuki, H.; Yamaura, K.; Matsuzawa, S. Macromolecules, 18, 2595, 1985
[57] Coniglio, A.; Stanley, H. E.; Klein, W. Phys Rev Lett, 42, 518, 1979
[58] Ohkura, M.; Kanaya, T.; Kaji, K. Polymer, 33, 5044, 1992
[59] Dikshit, A. K.; Nandi, A. K. Macromolecules, 31, 8886, 1998
[60] Choi, J. H.; Ko, S. W.; Kim, B. C.; Blackwell, J.; Lyoo, W. S. Macromolecules, 34, 2964, 2001
[61] Mal, S; Maiti, P.; Nandi, K. Macromolecules, 28, 2371, 1995
[62] Dikshit, A. K.; Nandi, A. K. Macromolecules, 31, 8886, 1998
[63] Sudip, M.; Tushar, J.; Nandi, K. Macromolecules, 34, 275, 2001
[64] Frish, H. L.; Simha, R. In Reology Theory and Applications; Eirich, F. R., Ed.; Academic Press: New York, 1956
[65] Hong, P. D.; Chou, C. M. Macromolecules, 33, 9673, 2000
[66] Cowie, J. M. G.; Toporowski, P. M. Can. J. Chem., 39, 2240, 1964
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔